Message Delivery Model for Animal Grazing Control Using the Internet of Things and Unmanned Aerial Vehicle

Authors

  • Jalal Qais Jameel Karwi Mustansiriyah University
  • Konstantin A. Polshchykov Belgorod State National Research University
  • Mikhail E. Mamatov Belgorod State National Research University
  • Denis A. Goldobin Belgorod State National Research University

DOI:

https://doi.org/10.52575/2687-0932-2025-52-1-227-238

Keywords:

animal grazing control, geo-positioning, tracker, unmanned aerial vehicle, multicopter, internet of things, LoRaWAN protocol

Abstract

The study is devoted to the development of a mathematical model for delivering messages sent by geo-positioning trackers over the network to monitor the location of grazing animals. The authors propose to transmit data on the location of monitored individual animals to the operator-shepherd panel using a wireless Internet of Things network during the grazing process. In cases where an animal dangerously approaches the pasture boundary, the operator can use an unmanned aerial vehicle to direct the animal to a safe location. The scientific novelty of the model lies in considering the influence of the parameters of the pasture, the monitored herd, the multicopter, and the wireless devices used on the values of time intervals between the moments of delivering data sent by trackers placed on the animals to the operator panel. The proposed model is based on the original classification of the location of monitored objects. Depending on the distance to the pasture boundary, four classes of animal location are distinguished. Computational experiments were carried out illustrating the possibility of using the proposed model to justify the values of the period of sending messages by trackers, which ensures the timely use of the unmanned vehicle, taking into account the classes of animal location.

Downloads

Download data is not yet available.

Author Biographies

Jalal Qais Jameel Karwi, Mustansiriyah University

MSc, Assistant Lecturer of the Mustansiriyah University, Baghdad, Iraq

E-mail: jalalalqaisy1@gmail.com

Konstantin A. Polshchykov, Belgorod State National Research University

Doctor of Technical Sciences, Associate Professor, Professor of the Department of Information and Robotic Systems, Belgorod State National Research University, Belgorod, Russia

E-mail: polshchikov@bsuedu.ru

Mikhail E. Mamatov, Belgorod State National Research University

Postgraduate Student,  Belgorod State National Research University, Belgorod, Russia

E-mail: 1333190@bsuedu.ru

Denis A. Goldobin, Belgorod State National Research University

Postgraduate Student, Belgorod State National Research University, Belgorod, Russia

E-mail: denis.goldobin@printgrad.ru

References

Список литературы

Балакшин М.С., Польщиков К.А. 2024. Оценивание характеристик доставки данных в системе промышленного Интернета вещей. Современные наукоемкие технологии, 8: 35–40. DOI 10.17513/snt.40109.

Башилов А.М., Королев В.А. 2023. Аэромобильные устройства в технологиях пастбищного животноводства. Вестник аграрной науки Дона, 16(1): 54–65. DOI: 10.55618/20756704_2023_16_1_54-65.

Джамил К.Дж.К., Лихошерстов Р.В., Польщиков К.А. 2022. Модель передачи видеопотоков в летающей беспроводной самоорганизующейся сети. Экономика. Информатика, 49(2): 403–415. DOI 10.52575/2687-0932-2022-49-2-403-415.

Константинов И.С., Пилипенко О.В., Польщиков К.А., Иващук О.Д. 2016. К вопросу обеспечения связи в процессе предупреждения и ликвидации чрезвычайных ситуаций на объектах строительства. Строительство и реконструкция, 1(63): 40–46.

Константинов И.С., Польщиков К.А., Лазарев С.А. 2015. Имитационная модель передачи информационных потоков в мобильной радиосети специального назначения. Научные ведомости Белгородского государственного университета. Серия: Экономика. Информатика, 13 (210): 156–163.

Кузьмина Т.Н., Кузьмин В.Н. 2021. Технические разработки для механизации овцеводства. Техника и технологии в животноводстве, 2(42): 53–58. DOI 10.51794/27132064-2021-2-53.

Польщиков К.А. 2015. Оценка вероятностно-временных характеристик доставки данных в беспроводной самоорганизующейся сети. Научные ведомости Белгородского государственного университета. Серия: Экономика. Информатика, 7(204): 183–187.

Шигимага В.А., Файзуллин Р.А., Осокина А.С. 2023. Обоснование параметров беспилотной системы для автоматизированного мониторинга животных на пастбище. Аграрная наука Евро-Северо-Востока, 24(1): 132–140. DOI 10.30766/2072-9081.2023.24.1.132-140.

Ясир М.Д.Я., Польщиков К.А., Федоров В.И. 2023. Модель доставки сообщения в сенсорной сети с низким энергопотреблением. Экономика. Информатика, 50(2): 439–447. DOI: 10.52575/2687-0932-2023-50-2-439-447.

Afrianto I., Wahjuni S., Djatna T. 2020. Model of Ubiquitous Precision Livestock System 4.0: A Technological Review. Proceedings of the 2nd Faculty of Industrial Technology International Congress International Conference. Bandung: 156-162.

Alipio M., Chaguile C.C., Bures M. 2024. A review of LoRaWAN performance optimization through cross-layer-based approach for Internet of Things. Internet of Things, 28: 101378. DOI: 10.1016/j.iot.2024.101378.

Alipio M., Bures M. 2024. Current testing and performance evaluation methodologies of LoRa and LoRaWAN in IoT applications: Classification, issues, and future directives. Internet of Things, 25: 101053. DOI: 10.1016/j.iot.2023.101053.

El-Fiqi H., Kasmarik K., Abbass H.A. 2021. Logical Shepherd Assisting Air Traffic Controllers for Swarm UAV Traffic Control Systems. Unmanned System Technologies. DOI: 10.1007/978-3-030-60898-9_1.

Hamandi M., Usai F., Sablé Q., Staub N., Tognon M., Franchi A. 2021. Design of multirotor aerial vehicles: A taxonomy based on input allocation. The International Journal of Robotics Research, 40(8-9): 1015–1044. DOI: 10.1177/02783649211025998.

Jameel J.Q., Mahdi T.N., Polshchykov K.A., Lazarev S.А., Likhosherstov R.V., Kiselev V.E. 2022. Development of a mathematical model of video monitoring based on a self-organizing network of unmanned aerial vehicles. Periodicals of Engineering and Natural Sciences, 10(6): 84–95.

Mahdi T.N., Jameel J.Q., Polshchykov K.A., Lazarev S.А., Polshchykov I.K., Kiselev V.E. 2021. Clusters partition algorithm for a self-organizing map for detecting resource-intensive database inquiries in a geo-ecological monitoring system/ Periodicals of Engineering and Natural Sciences, 9(4): 1138–1145. DOI 10.21533/pen.v10i1.2584.

Montalván S., Arcos P., Sarzosa P., Rocha R.A., Yoo S.G., Kim Y. 2024. Technologies and Solutions for Cattle Tracking: A Review of the State of the Art. Sensors, 24(19): 6486. DOI 10.3390/s24196486.

Lee C., Kim S., Chu B. 2021. A Survey: Flight Mechanism and Mechanical Structure of the UAV. International Journal of Precision Engineering and Manufacturing, 22: 719–743. DOI 10.1007/s12541-021-00489-y.

Li X., Huang H., Savkin A.V., Zhang J. 2022. Robotic Herding of Farm Animals Using a Network of Barking Aerial Drones. Drones, 6(2): 29. DOI: 10.3390/drones6020029.

Peksa J., Mamchur D. 2024. A Review on the State of the Art in Copter Drones and Flight Control Systems. Sensors, 24(11): 3349. DOI: 10.3390/s24113349.

Priyadharshini S.P., Balamurugan P. 2022. Unmanned Aerial Vehicle in the Smart Farming Systems: Types, Applications. IEEE Xplore. DOI: 10.1109/ICSES55317.2022.9914070.

Subramaniam K., Salim W.S.-I.W. 2024. A Review of Experimental Approaches for Investigating the Aerodynamic Performance of Drones and Multicopters. Journal of Advanced Research in Experimental Fluid Mechanics and Heat Transfer, 14(1): 1–24. DOI 10.37934/arefmht.14.1.124.

Yaxley K.J., Joiner K.F., Abbass H. 2021. Drone approach parameters leading to lower stress sheep flocking and movement: sky shepherding. Scientific Reports, 11: 7803. DOI 10.1038/s41598-021-87453-y.

Yaxley K.J., Reid A., Kenworthy C., Hossny M., Baxter D.P., Allworth M.B., McGrath S.R., Joiner K.F., Abbass H. 2023. Building a Sky Shepherd for the future of agriculture. Smart Agricultural Technology, 3: 100137.

Yaser M.J., Polshchykov K.A., Polshchikov I.K. 2023. Algorithm for ensuring the minimum power consumption of the end node in the LoRaWAN network. Periodicals of Engineering and Natural Sciences, 11(4): 168–174. DOI 10.21533/pen.v11i4.3779.

References

Balakshin M.S., Polschykov K.A. 2024. Assessing data delivery characteristics in industrial internet of things system. Modern High Technologies, 8: 35–40 (in Russian). DOI: 10.17513/snt.40109.

Bashilov A.M., Korolev V.A. 2023. Airmobile devices in technologies for pasture animal farming. Don agrarian science bulletin, 16(1): 54–65 (in Russian). DOI: 10.55618/20756704_2023_16_1_54-65.

Jameel K.J.Q., Likhosherstov R.V., Polshchikov K.A. 2022. Model of Video Streams Transmission in a Flying Ad Hoc Network. Economics. Information technologies, 49(2): 403–415 (in Russian). DOI: 10.52575/2687-0932-2022-49-2-403-415.

Konstantinov I., Pilipenko O., Polshchykov K., Ivaschuk O. The issue of communication in the process of prevention and liquidation of emergency situations at construction sites. Construction and re-construction, 1(63): 40–46 (in Russian).

Konstantinov I.S., Polshсhikov K.A., Lazarev S.A. 2015. Simulation model of information flows transmission in mobile ad-hoc network for special purpose. Belgorod State University Scientific Bulletin. Economics. Information technologies, 13 (210): 156–163. (in Russian).

Kuzmina T.N., Kuzmin V.N. 2021. Technical developments for sheep farming mechanization. Machinery and technologies in livestock, 2 (42): 53–58. (in Russian). DOI 10.51794/27132064-2021-2-53.

Polshсhikov K.A. 2015. Probability-time characteristics estimates of data delivery in the wireless ad hoc network. Belgorod State University Scientific Bulletin. Economics. Information technologies, 7 (204): 183–187. (in Russian).

Shigimaga V.A., Fayzullin R.A., Osokina A.S. 2023. The substantiation of the parameters of an unmanned system for automated monitoring of animals on pasture. Agricultural Science Euro-North-East, 24 (1): 132–140. ((in Russian). DOI: 10.30766/2072-9081.2023.24.1.132-140.

Yaser M.J.Y., Polshchikov K.A., Fedorov V.I. 2023. Message Delivery Model in a LowPower Sensor Network. Economics. Information technologies, 50(2): 439–447 (in Russian). DOI: 10.52575/2687-0932-2023-50-2-439-447.

Afrianto I., Wahjuni S., Djatna T. 2020. Model of Ubiquitous Precision Livestock System 4.0: A Technological Review. Proceedings of the 2nd Faculty of Industrial Technology International Congress International Conference. Bandung: 156-162.

Alipio M., Chaguile C.C., Bures M. 2024. A review of LoRaWAN performance optimization through cross-layer-based approach for Internet of Things. Internet of Things, 28: 101378. DOI: 10.1016/j.iot.2024.101378.

Alipio M., Bures M. 2024. Current testing and performance evaluation methodologies of LoRa and LoRaWAN in IoT applications: Classification, issues, and future directives. Internet of Things, 25: 101053. DOI: 10.1016/j.iot.2023.101053.

El-Fiqi H., Kasmarik K., Abbass H.A. 2021. Logical Shepherd Assisting Air Traffic Controllers for Swarm UAV Traffic Control Systems. Unmanned System Technologies. DOI: 10.1007/978-3-030-60898-9_1.

Hamandi M., Usai F., Sablé Q., Staub N., Tognon M., Franchi A. 2021. Design of multirotor aerial vehicles: A taxonomy based on input allocation. The International Journal of Robotics Research, 40(8-9): 1015–1044. DOI: 10.1177/02783649211025998.

Jameel J.Q., Mahdi T.N., Polshchykov K.A., Lazarev S.А., Likhosherstov R.V., Kiselev V.E. 2022. Development of a mathematical model of video monitoring based on a self-organizing network of unmanned aerial vehicles. Periodicals of Engineering and Natural Sciences, 10(6): 84–95.

Mahdi T.N., Jameel J.Q., Polshchykov K.A., Lazarev S.А., Polshchykov I.K., Kiselev V.E. 2021. Clusters partition algorithm for a self-organizing map for detecting resource-intensive database inquiries in a geo-ecological monitoring system/ Periodicals of Engineering and Natural Sciences, 9(4): 1138–1145. DOI 10.21533/pen.v10i1.2584.

Montalván S., Arcos P., Sarzosa P., Rocha R.A., Yoo S.G., Kim Y. 2024. Technologies and Solutions for Cattle Tracking: A Review of the State of the Art. Sensors, 24(19): 6486. DOI 10.3390/s24196486.

Lee C., Kim S., Chu B. 2021. A Survey: Flight Mechanism and Mechanical Structure of the UAV. International Journal of Precision Engineering and Manufacturing, 22: 719–743. DOI 10.1007/s12541-021-00489-y.

Li X., Huang H., Savkin A.V., Zhang J. 2022. Robotic Herding of Farm Animals Using a Network of Barking Aerial Drones. Drones, 6(2): 29. DOI: 10.3390/drones6020029.

Peksa J., Mamchur D. 2024. A Review on the State of the Art in Copter Drones and Flight Control Systems. Sensors, 24(11): 3349. DOI: 10.3390/s24113349.

Priyadharshini S.P., Balamurugan P. 2022. Unmanned Aerial Vehicle in the Smart Farming Systems: Types, Applications. IEEE Xplore. DOI: 10.1109/ICSES55317.2022.9914070.

Subramaniam K., Salim W.S.-I.W. 2024. A Review of Experimental Approaches for Investigating the Aerodynamic Performance of Drones and Multicopters. Journal of Advanced Research in Experimental Fluid Mechanics and Heat Transfer, 14(1): 1–24. DOI 10.37934/arefmht.14.1.124.

Yaxley K.J., Joiner K.F., Abbass H. 2021. Drone approach parameters leading to lower stress sheep flocking and movement: sky shepherding. Scientific Reports, 11: 7803. DOI 10.1038/s41598-021-87453-y.

Yaxley K.J., Reid A., Kenworthy C., Hossny M., Baxter D.P., Allworth M.B., McGrath S.R., Joiner K.F., Abbass H. 2023. Building a Sky Shepherd for the future of agriculture. Smart Agricultural Technology, 3: 100137.

Yaser M.J., Polshchykov K.A., Polshchikov I.K. 2023. Algorithm for ensuring the minimum power consumption of the end node in the LoRaWAN network. Periodicals of Engineering and Natural Sciences, 11(4): 168–174. DOI 10.21533/pen.v11i4.3779.


Abstract views: 13

Share

Published

2025-03-28

How to Cite

Karwi, J. Q. J., Polshchykov, K. A., Mamatov, M. E., & Goldobin, D. A. (2025). Message Delivery Model for Animal Grazing Control Using the Internet of Things and Unmanned Aerial Vehicle. Economics. Information Technologies, 52(1), 227-238. https://doi.org/10.52575/2687-0932-2025-52-1-227-238

Issue

Section

INFOCOMMUNICATION TECHNOLOGIES

Most read articles by the same author(s)