Prediction Models of the Average Distance Between Nodes of a Flying Ad Hoc Network
DOI:
https://doi.org/10.52575/2687-0932-2022-49-3-616-629Keywords:
flying ad hoc network, prediction of average distance between nodes, regression and autoregression models, fuzzy inference, neural network learningAbstract
The results of a study on the development of models for predicting the average distance between the nodes of a flying ad hoc network are presented. The relevance of creating tools that allow predicting the average distance between transmitting and receiving network nodes with acceptable accuracy is justified by the possibility of using them to select and set an adequate value of the transmitted signal power at the network nodes. The solution to this problem is ultimately focused on ensuring the required quality of video broadcasting based on a flying ad hoc network used to monitor territories during search and rescue operations. It is shown that the use of regression and autoregression models gives unacceptable deviations of the forecast results from real data, which leads to a decrease in the probability of the required quality of video broadcast over the network to an unacceptably low level. To predict the average distance between transmitting and receiving nodes, a model based on fuzzy inference is proposed. Automatic selection of unknown values of fuzzy inference parameters is provided on the basis of neural network tuning during multiple training cycles. The obtained results of the study showed that the use of the fuzzy inference model makes it possible to obtain an acceptable accuracy in predicting the average distance between the nodes of a flying ad hoc network.
Downloads
References
Агузумцян Р.В., Великанова А.С., Польщиков К.А., Игитян Е.В., Лихошерстов Р.В. 2021. О применении интеллектуальных технологий обработки естественного языка и средств виртуальной реальности для поддержки принятия решений при подборе исполнителей проектов. Экономика. Информатика, 48 (2): 392–404. DOI 10.52575/2687-0932-2021-48-2-392-404.
Вентцель Е.С. 2006. Теория вероятностей. 10-е изд. стер. М, Высшая школа, 575 с.
Джамил К.Дж.К., Лихошерстов Р.В., Польщиков К.А. 2022. Модель передачи видеопотоков в летающей беспроводной самоорганизующейся сети. Экономика. Информатика, 49(2): 403–415. DOI 10.52575/2687-0932-2022-49-2-403-415.
Махди Т.Н., Игитян Е.В., Польщиков К.А., Корсунов Н.И. 2022. Оценивание эффективности функционирования диалоговой системы на основе применения нечеткого вывода с нейросетевой настройкой. Экономика. Информатика, 49(2): 356–374. DOI 10.52575/2687-0932-2022-49-2-356-374.
Albu-Salih A.T., Khudhair H.A. 2021. ASR-FANET: An adaptive SDN-based routing framework for FANET. International Journal of Electrical and Computer Engineering, 11(5): 4403–4412.
Bukhari A. H., Sulaiman M., Islam S. 2020. Neuro-fuzzy modeling and prediction of summer precipitation with application to different meteorological stations. Alexandria Engineering Journal, 59(1): 101–116.
Da Costa L.A., Pignaton De Freitas E., Kunst R. 2021. Q-FANET: Improved Q-learning based routing protocol for FANETs. Computer Networks, 198: 108379.
Khan I. U., Aziz M. A., Cheema T. A. 2020. Smart IoT control-based nature inspired energy efficient routing protocol for Flying Ad Hoc Network (FANET). IEEE Access, 8: 56371–56378.
Konstantinov I., Polshchykov K., Lazarev S., Polshchykova O. 2017. Mathematical Model of Message Delivery in a Mobile Ad Hoc Network. Proceedings of the 11th International Conference on Application of Information and Communication Technologies (AICT): 10–13.
Konstantinov I., Polshchykov K., Lazarev S., Polshchykova O. 2017. Model of neuro-fuzzy prediction of confirmation timeout in a mobile ad hoc network. CEUR Workshop Proceedings. Proceedings of the International Conference Mathematical and Information Technologies (MIT 2016): 174–186.
Pandey A., Shukla P.K., Agrawal R., Khare A. 2019. Grasshopper optimization based clustering algorithm (GOCA) for adaptive flying ad-hoc network (FANET) to enhance the quality of service (QoS). International Journal of Scientific and Technology Research, 8(11): 3731–3736.
Pilato G., Yarushev S. A., Averkin A. N. 2019. Prediction and detection of user emotions based on neuro-fuzzy neural networks in social networks. Advances in Intelligent Systems and Computing, 875: 118–125.
Polshchykov K., Lazarev S., Zdorovtsov A. 2017. Multimedia Messages Transmission Modeling in a Mobile Ad Hoc Network. Proceedings of the 11th International Conference on Application of Information and Communication Technologies (AICT): 24–27.
Polshchykov K.O., Lazarev S.A., Kiseleva E.D. 2018. Mathematical Model of Multimedia Information Exchange in Real Time Within а Mobile Ad Hoc Network. International Journal of Computer Science and Network Security, 18(6): 20–24.
Polshchykov K., Shabeeb A.H.T., Lazarev S. 2020. Algorithm for receiving the recommended bandwidth of a wireless self-organizing network channel. Periodicals of Engineering and Natural Sciences, 8(3): 1873–1879.
Polshchykov K., Shabeeb A.H.T., Lazarev S., Kiselev V. 2021. Justification for the decision on loading channels of the network of geoecological monitoring of resources of the agroindustrial complex. Periodicals of Engineering and Natural Sciences, 9(3): 781–787.
Polshchykov K.A., Lazarev S.A., Konstantinov I.S., Polshchykova O.N., Svoikina L.F., Igityan E.V., Balakshin M.S. 2020. Assessing the Efficiency of Robot Communication. Russian Engineering Research, 40: 936–938.
Polshchykov K., Lazarev S., Polshchykova O., Igityan E. 2019. The Algorithm for Decision-Making Supporting on the Selection of Processing Means for Big Arrays of Natural Language Data. Lobachevskii Journal of Mathematics, 40(11): 1831–1836.
Rohi G., Ofualagba G. 2020. Autonomous monitoring, analysis, and countering of air pollution using environmental drones. Heliyon, 6(1): 1–10.
Takagi T., Sugeno M. 1985. Fuzzy Identification of Systems and Its Applications to Modeling and Control. IEEE Transactions on Systems, Man, and Cybernetics, 15: 116–132.
Tu C. H., Li C. 2020. Multitarget prediction using an aim-object-based asymmetric neuro-fuzzy system: A novel approach. Neurocomputing, 389: 155-169.
Velikanova A.S., Polshchykov K.A., Likhosherstov R.V., Polshchykova A.K. 2021. The use of virtual reality and fuzzy neural network tools to identify the focus on achieving project results. Journal of Physics: Conference Series. 2nd International Scientific Conference on Artificial Intelligence and Digital Technologies in Technical Systems 2021, Volgograd, 2060: 173707.
Abstract views: 107
Share
Published
How to Cite
Issue
Section
Copyright (c) 2022 ECONOMICS. INFORMATION TECHNOLOGIES
This work is licensed under a Creative Commons Attribution 4.0 International License.