Voice traffic quality analysis in MANET with mixed communication channels: simulation model

Authors

  • Alexander G. Okhrimenko Belgorod State National Research University
  • Sergey A. Lazarev Belgorod State National Research University
  • Konstantin A. Polschikov Belgorod State National Research University

DOI:

https://doi.org/10.18413/2687-0932-2020-47-4-842-852

Keywords:

MANET, simulation model, NS-3, optic communication channel, VoIP

Abstract

The article is devoted to the development of a simulation model for analyzing the quality of voice traffic transmission in a MANET with mixed communication channels —optical and radio channels. The purpose of the article is to extend the practice of researching telecommunications networks using the NS-3 discrete network simulator to VoIP MANET with mixed communication channels. A model of a MANET with mixed communication channels divided into local groups of nodes connected by optical channels is proposed. A multiparametric simulation model has been developed to research the process of VoIP. A trial simulation of the process of transmitting voice traffic from a source to a receiver located in different local groups with independent movement of nodes of different local groups and using standard dynamic routing protocols was performed. The theoretical significance consists in the development of a simulation model for researching the process of VoIP in a MANET with mixed communication channels.

Downloads

Download data is not yet available.

Author Biographies

Alexander G. Okhrimenko, Belgorod State National Research University

Статья посвящена разработке имитационной модели для анализа качества передачи голосового трафика в подвижной беспроводной самоорганизующейся сети со смешанными каналами связи — оптическими и радиоканалами. Целью статьи является расширение практики исследования телекоммуникационных сетей с использованием дискретного сетевого имитатора NS-3 на самоорганизующиеся VoIP-сети со смешанными каналами связи. Предложена модель подвижной беспроводной самоорганизующейся сети со смешанными каналами связи с разбиением на локальные группы узлов, связанные оптическими каналами. Разработана многопараметрическая имитационная модель для исследования процесса передачи голосового трафика. Проведено пробное имитационное моделирование процесса передачи голосового трафика от источника до приемника, размещенных в различных локальных группах при независимом движении узлов различных локальных групп и при использовании типовых протоколов динамической маршрутизации. Теоретическая значимость состоит в разработке имитационной модели для исследования процесса передачи голосового трафика в подвижной беспроводной самоорганизующейся сети со смешанными каналами связи.

Sergey A. Lazarev, Belgorod State National Research University

Candidate of in Economic Sciences, Deputy Director for Scientific and International activities of the Institute of Engineering and Digital Technologies, Belgorod State National Research University,
Belgorod, Russia

Konstantin A. Polschikov, Belgorod State National Research University

Doctor of Technical Sciences, Associate Professor, Director of the Institute of Engineering and Digital Technologies, Belgorod State National Research University,
Belgorod, Russia

References

Датьев И.О., Павлов А.А., Шишаев М.Г. 2015. Моделирование беспроводных многошаговых самоорганизующихся мобильных сетей. Труды Кольского научного центра РАН, 3(29): 137–150.

Константинов И. С., Польщиков К. А., Лазарев С. А. 2015. Имитационная модель передачи информационных потоков в мобильной радиосети специального назначения. Научные ведомости БелГУ, 35(1): 156–163.

Щетинин Ю.И., Поллер Б.В., Бритвин А.В. 2007. Использование ультрафиолетовых каналов с рассеянием в беспроводных информационных системах и микросистемах. Специализированное приборостроение, метрология, теплофизика, микротехника. Сб. материалов Международного научного конгресса «Гео-Сибирь». Новосибирск, 4: 176–180.

ACM. 2020. Available at: https://dl.acm.org/action/doSearch?AllField=WNS3 (date of the application: 12.11.2020).

Aldalbahi A, Rahaim M, Khreishah A. et al. 2017. Visible Light Communication Module An Open Source Extension to the ns3 Network Simulator With Real System Valida. IEEE Access, 5: 22144–22158.

Bakhtin А., Volkov A., Muratchaev S. et al. 2017. Development of MANET Network Model for Space Environment in NS3. Proc. of the 2017 IEEE Russia Section Young Researchers in Electrical and Electronic Engineering Conference (2017 ElConRus). St. Petersburg, 31–34.

Di Perna M. 2016. Optical Satellite Systems for ns-3. Available at: https://www.nsnam.org/wiki/SOCIS2016 (date of the application: 12.11.2020).

Eclipse IDE for C/C++ Developers. 2020. Available at: https://www.eclipse.org/downloads/packages/release/2020-03/r/eclipse-ide-cc-developers-includes-incubating-components (date of the application: 12.11.2020).

Konstantinov I., Polshchykov K., Lazarev S., Polshchykova O. 2016. The Usage of the Mobile Ad-Hoc Networks in the Construction Industry. Proc. of the 10th Int. Conf. on Application of Information and Communication Technologies (AICT). Baku, 455–457.

Konstantinov I.S., Vasyliev G.S., Kuzichkin O.R. et al. 2019. AUV link mobile ad-hoc network examination. Int. Journal of Engineering and Advanced Technology, 8(5S): 512–517.

Konstantinov I.S., Vasyliev G.S., Kyzichkin O.R. et al. 2019. Modeling and analyzing of UV channels characteristics in various configuration of transmitters and receivers for building manet. International Journal of Innovative Technology and Exploring Engineering, 8(6S3): 576–581.

Kurkowski S., Camp T., Colagrosso M. 2005. MANET simulation studies: the incredible. ACM SIGMOBILE Mobile Computing and Communications Review, 9(4): 50–61.

Miletić V., Mikac B., Džanko M. 2012. Modelling Optical Network Components: A Network Simulator-Based Approach. Proc. of the IX International Symposium on Telecommunications (BIHTEL), 1–6.

NetAnim. 2020. Available at: https://www.nsnam.org/wiki/NetAnim (date of the application: 12.11.2020).

NS-3. 2020. Available at: https://www.nsnam.org/ (date of the application: 12.11.2020).

NS-3 Allinone. 2020. Available at: https://www.nsnam.org/releases/ns-allinone-3.30.1.tar.bz2 (date of the application: 12.11.2020).

NS-3 Consortium. 2020. Available at: https://www.nsnam.org/consortium/ (date of the application: 12.11.2020).

NS-3 Documentation. 2020. Available at: https://www.nsnam.org/docs/release/3.30/doxygen/index.html (date of the application: 12.11.2020).

NS-3 Manual. 2020. Available at: https://www.nsnam.org/docs/release/3.30/manual/ns-3-manual.pdf (date of the application: 12.11.2020).

NS-3 Model library. 2020. Available at: https://www.nsnam.org/docs/release/3.30/models/ns-3-model-library.pdf (date of the application: 12.11.2020).

NS-3 Tutorial. 2020. Available at: https://www.nsnam.org/docs/release/3.30/tutorial/ns-3-tutorial.pdf (date of the application: 12.11.2020).

Polshchykov K.O., Lazarev S.A., Zdorovtsov A.D. 2017. Neuro-Fuzzy Control of Data Sending in a Mobile Ad Hoc Network. Journal of Fundamental and Applied Sciences, 9(2S): 1494–1501.

Regis P., Bhunia S, Sengupta S. 2016. Implementation of 3D Obstacle Compliant Mobility Models for UAV Networks in ns-3. Proc. of the Workshop on ns-3, 148.

Sevincer A, Karaoglu H, and Yuksel M. 2011. Performance Analysis of Voice Transfer Using Multi-Transceiver Optical Communication Structures. International Conference on Space Optical Systems and Applications, 73–77.

Uysal M., Capsoni C., Ghassemlooy Z. et al. 2016. Optical Wireless Communications: An Emerging Technology. Seria «Signals and Communication Technology». Springer International Publishing, 635.

Share

Published

2021-03-12

How to Cite

Okhrimenko, A. G., Lazarev, S. A., & Polschikov, K. A. (2021). Voice traffic quality analysis in MANET with mixed communication channels: simulation model. Economics. Information Technologies, 47(4), 842-852. https://doi.org/10.18413/2687-0932-2020-47-4-842-852

Issue

Section

INFOCOMMUNICATION TECHNOLOGIES