Assessing the Intensity of Sending Packets When Transmitting Telemetry Messages in an IoT System for Medical Purposes
DOI:
https://doi.org/10.52575/2687-0932-2024-51-3-710-721Keywords:
remote medical monitoring, Internet of things, IoT system, telemetry messages, MQTTAbstract
The article is devoted to the study of the process of transmitting telemetry messages in the Internet of Things (IoT) system for remote medical monitoring. Based on the use of the probabilistic graph apparatus, a mathematical model of data exchange between sensor devices and the MQTT server has been developed, which adequately reflects the dependence of the intensity of sending packets when transmitting telemetry messages in an IoT system depending on the level of bit errors in wireless channels and a number of other characteristics of the process under study. The results of computational experiments performed using the developed model are presented. The results obtained correspond to the logic of the data exchange process between sensor devices and the server and can be used in further research to control the parameters and delivery modes of telemetry messages in an IoT system for medical purposes. In particular, based on the results obtained, it is planned to develop methods for controlling the timeout and the number of retransmissions of data packets, and selecting the provided QoS level depending on changing external conditions. This will minimize delays in the delivery of telemetry messages in the IoT system and ensure the speed of transmission of data on the health status of patients in wireless remote monitoring systems used by medical workers to provide timely assistance.
Downloads
References
Джамил К.Дж.К., Лихошерстов Р.В., Польщиков К.А. 2022. Модель передачи видеопотоков в летающей беспроводной самоорганизующейся сети. Экономика. Информатика, 49(2): 403–415. DOI 10.52575/2687-0932-2022-49-2-403-415.
Лихошерстов Р.В., Польщиков К.А., Лазарев С.А. 2024. Управление передачей видеопотоков в летающей беспроводной самоорганизующейся сети. Экономика. Информатика, 51(1): 221–231. DOI 10.52575/2687-0932-2024-51-1-221-231.
Ясир М.Д.Я., Польщиков К.А., Маматов Е.М. 2023. Имитационная модель функционирования беспроводной сети с низким энергопотреблением. Экономика. Информатика, 50(3): 645–654. DOI: 10.52575/2687-0932-2023-50-3-645-654.
Ясир М.Д.Я., Польщиков К.А. 2023. Оценивание энергопотребления узлов беспроводной сети датчиков. Инженерный вестник Дона, 9(105): 172–181.
Ясир М.Д.Я., Польщиков К.А., Федоров В.И. 2023. Модель доставки сообщения в сенсорной сети с низким энергопотреблением. Экономика. Информатика, 50(2): 439–447. DOI:10.52575/2687-0932-2023-50-2-439-447.
Aversano L., Bernardi M.L., Cimitile M. 2024. Explainable Anomaly Detection of Synthetic Medical IoT Traffic Using Machine Learning. SN Computer Science, 5: 488.
Balasundaram A., Routray S., Prabu A.V., Krishnan P., Malla P.P., Maiti M. 2023. Internet of Things (IoT)-Based Smart Healthcare System for Efficient Diagnostics of Health Parameters of Patients in Emergency Care. IEEE Internet of Things Journal, 10(21): 18563–18570.
Bender M., Kirdan E., Pahl M.-O., Carle G. 2021. Open-Source MQTT Evaluation. IEEE 18th Annual Consumer Communications & Networking Conference (CCNC), Las Vegas: 1–4
Bhatti D. S., Hussain M. M., Suh B., Ali Z., Akobir I., Kim K.-I. 2024. IoT-Enhanced Transport and Monitoring of Medicine Using Sensors, MQTT, and Secure Short Message Service. IEEE Access, 12: 46690–46703.
Bhardwaj A., El-Ocla H. 2020. Multipath Routing Protocol Using Genetic Algorithm in Mobile Ad Hoc Networks. IEEE Access, 8: 177534–177548.
Gupta H., Nayak A. 2023. Use of MQTT-SN in Sending Distress Signals in Vehicular Communication. 2023 International Symposium on Networks, Computers and Communications (ISNCC), Doha: 1–6.
Herrero R. 2020. MQTT-SN, CoAP, and RTP in wireless IoT real-time communications. Multimedia Systems, 26: 643–654.
Jameel J.Q., Mahdi T.N., Polshchykov K.A., Lazarev S.А., Likhosherstov R.V., Kiselev V.E. 2022. Development of a mathematical model of video monitoring based on a self-organizing network of unmanned aerial vehicles. Periodicals of Engineering and Natural Sciences, 10(6):84–95.
Khanna A., Kaur S. 2020. Internet of Things (IoT), Applications and Challenges: A Comprehensive Review. Wireless Personal Communications, 114: 1687–1762.
Konstantinov I., Polshchykov K., Lazarev S., Polshchykova O. 2017. Model of neuro-fuzzy prediction of confirmation timeout in a mobile ad hoc network. CEUR Workshop Proceedings,1839: 174–186.
Lakshminarayana S., Praseed A., Thilagam P. S. 2024. Securing the IoT Application Layer from an MQTT Protocol Perspective: Challenges and Research Prospects. IEEE Communications Surveys & Tutorials. https://doi.org/10.1109/COMST.2024.3372630 (дата обращения: 25.06.2024).
Longo E., Redondi A.E.C. 2023. Design and implementation of an advanced MQTT broker for distributed pub/sub scenarios. Computer Networks, 224: 109601.
Pasha A., Nagaraja S. R. 2023. An Efficient ECG Monitoring System using MQTT Protocol for Remote Patients in an IoT System. International Journal of Intelligent Systems and Applications in Engineering, 12(1): 146–153.
Polshchykov K., Lazarev S., Kiselev V., Shabeeb A. H. T. 2021. Justification for the decision on loading channels of the network of geoecological monitoring of resources of the agroindustrial complex. Periodicals of Engineering and Natural Sciences, 9(3): 781–787.
Puri V., Kataria A., Sharma V. 2024. Artificial intelligence-powered decentralized framework for Internet of Things in Healthcare 4.0. Transactions on Emerging Telecommunications Technologies, 35(4): e4245.
Ramphull D., Mungur A., Armoogum S., Pudaruth S. 2021. A Review of Mobile Ad hoc NETwork (MANET) Protocols and their Applications. 5th International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai: 204–211.
Sadoughi F., Behmanesh A., Sayfouri N. 2020. Internet of things in medicine: A systematic mapping study. Journal of Biomedical Informatics, 103: 103383.
Shafi I., Din S., Farooq S., Díez I., Breñosa J., Espinosa J.C.M. 2024. Design and development of patient health tracking, monitoring and big data storage using Internet of Things and real time cloud computing. PLoS ONE, 19(3): e0298582.
Stitini O., Ouakasse F., Rakrak S., Kaloun S., Bencharef O. 2024. Combining IoMT and XAI for Enhanced Triage Optimization: An MQTT Broker Approach with Contextual Recommendations for Improved Patient Priority Management in Healthcare. International Journal of Online & Biomedical Engineering, 20(7):145.
Wang J., Lim M.K., Wang C., Tseng M.-L. 2021. The evolution of the Internet of Things (IoT) over the past 20 years. Computers & Industrial Engineering, 155: 107174.
Weqar M., Mehfuz S., Gupta D., Urooj S. 2024. Adaptive Switching Based Data-Communication Model for Internet of Healthcare Things Networks. IEEE Access, 12: 11530–1548.
Yaser M.J., Polshchykov K.A., Polshchikov I.K. 2023. Algorithm for ensuring the minimum power consumption of the end node in the LoRaWAN network. Periodicals of Engineering and Natural Sciences, 11(4): 168–174.
Yew H.T., Wong G.X., Wong F., Mamat M., Chung S.K. 2024. IoT-Based Patient Monitoring System. Internet of Things. https://doi.org/10.1007/978-981-97-1432-2_2.
Abstract views: 0
Share
Published
How to Cite
Issue
Section
Copyright (c) 2024 Economics. Information Technologies
This work is licensed under a Creative Commons Attribution 4.0 International License.