Modified Proni Method with a Correctional Control Signal

Authors

  • Valery P. Volchkov Moscow Technical University of Communications and Informatics
  • Ekaterina A. Potapova Moscow Technical University of Communications and Informatics

DOI:

https://doi.org/10.52575/2687-0932-2023-50-3-712-730

Keywords:

signal approximation, Prony method, recursive model, difference equations, discrete signals, causal signals, non-causal signals

Abstract

To approximate discrete non-causal signals given on an infinite two-sided time interval, a two-component modification of the Prony model is proposed, in which one component approximates the causal part of the signal, and the other, the anti-causal part. To reduce the approximation errors arising from the restrictions on the multiplicity of the poles, a special corrective signal is added to each component of the exponential Prony model, which plays the role of the optimal control and leads to its amplitude-phase correction. A method for optimal estimation of the parameters of the proposed two-component Prony model is developed and, on its basis, analytical expressions are obtained for the algorithm of the best approximation of signals by its finite sample of samples according to the minimum squared error (MSE) criterion. Strict analytical expressions are obtained for the spectrum of the approximating signal, built on the basis of the proposed Prony method with a corrective control signal.  The results of a comparative experiment are presented, confirming the good quality of the signal approximation in both the time and spectral domains under the conditions of the multiplicity of the poles. It is shown that in this case the proposed method makes it possible to reduce the approximation errors by more than 80 times compared to the conventional Prony method.

Downloads

Download data is not yet available.

Author Biographies

Valery P. Volchkov, Moscow Technical University of Communications and Informatics

Doctor of Technical Sciences, Professor, Professor of the Department of General Communication Theory, Moscow Technical University of Communications and Informatics, Moscow, Russian Federation

Ekaterina A. Potapova, Moscow Technical University of Communications and Informatics

senior teacher of the Department of General Communication Theory, Moscow Technical University of Communications and Informatics, Moscow, Russian Federation

References

Волчков В.П. 2009. Новые технологии передачи и обработки информации на основе хорошо локализованных сигнальных базисов. Научные ведомости БелГУ. Сер. История. Политология. Экономика. Информатика. 15(70): 181–189.

Волчков В.П., Антипова А.Н. 2022. Синтез аналоговых фильтров Гильберта и исследование их характеристик. Экономика. Информатика, 49(2): 416–431. DOI 10.52575/2687-0932-2022-49-2-416-431.

Волчков В.П., Асирян В.М. 2020. Сжатие изображений с использованием дискретного преобразования Вейля-Гейзенберга. Научные ведомости Белгородского государственного университета. Серия: Экономика. Информатика. 47 (2): 412–421

Волчков В.П., Асирян В.М. 2021. Возможности преобразования Вейля-Гейзенберга в стандарте сжатия jpeg. Научные ведомости Белгородского государственного университета. Серия: Экономика. Информатика. 48(1): 188–200.

Волчков В.П., Мирошниченко А.В. 2018. Вычисление эллиптических функций Якоби для расчета характеристик фильтра Кауэра. Научные ведомости Белгородского государственного университета. Серия: Экономика. Информатика. 45(2): 298–311.

Волчков В.П., Петров Д.А. 2009. Оптимизация ортогонального базиса Вейля-Гейзенберга для цифровых систем связи, использующих принцип OFDM/OQAM передачи. Научные ведомости БелГУ. Сер. История. Политология. Экономика. Информатика. 1(56): 102–112.

Волчков В.П., Петров Д.А. 2009. Условия ортогональности обобщенных базисов Вейля-Гейзенберга для OFTDM сигналов. Научные ведомости БелГУ. Сер. История. Политология. Экономика. Информатика. 15(70): 190–199.

Волчков В.П., Санников В.Г. 2016. Cинтез канальных прекодеров для цифровых систем связи с финитным сигнальным базисом. Электросвязь. 4: 41–45.

Волчков В.П., Санников В.Г. 2017. Оптимальное канальное прекодирование с ограничением уровня пульсаций на краях символьного интервала. Электросвязь. 6: 35–39.

Волчков В.П., Санников В.Г. 2018. Синтез оптимальных предыскаженных финитных сигналов на основе желаемого эталона. Электросвязь. 5: 26–30.

Волчков В.П., Санников В.Г. 2019. Синтез ортогональных вещественных сигнальных базисов Вейля-Гейзенберга на основе алгебраического подхода. Электросвязь. 5: 24–30.

Волчков В.П., Санников В.Г. 2020. Синтез банка фильтров на основе комплексного базиса Вейля-Гейзенберга. Электросвязь. 5: 98–102.

Марпл-мл С.Л. 1990. Цифровой спектральный анализ и его приложения. Пер. с англ. М., Мир, 584. (S. Lawrence. Marple, Jr., 1987. Digital Spectral Analysis with Applications. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 584).

Оппенгейм А., Шафер Р.Ц. 2006. Цифровая обработка сигналов. 3-е изд. Пер. с англ. М., Техносфера, 856. (Oppenheim A.V., Schafer R.W. 1999. Discrete-Time Signal Processing. 3rd Edition, Prentice Hall, 2009, 856).

Смит С. 2012. Цифровая обработка сигналов. Практическое руководство для инженеров и научных работников. Пер. с англ. М., Додэка-ХХI, 720. (Smith S.W. Digital Signal Processing. A Practical Guide for Engineers and Scientists. Newnes, 2003).

Hussen A., He W. Prony, 2022. Method for Two-Generator Sparse Expansion Problem. Mathematical and Computational Applications 27(4). July 2022. DOI:10.3390/mca27040060

Janith I., Herath H., Amarasinghe D.A.S, Attygalle D. 2022. A Novel Method on Fitting A Short Prony Series Using Creep or Stress Relaxation Data. Conference: 2022 Moratuwa Engineering Research Conference (MERCon), DOI:10.1109/MERCon55799.2022.9906185.

Khodaparast J., Fosso O.B., Molinas M. Phasor Estimation Based on Modified Recursive Prony. Conference: 2nd IEEE Conference on Control Technology and Applications - IEEE CCTA 2018. DOI:10.1109/CCTA.2018.8511393.

Keller I., Plonka G. 2021. Modifications of Prony's method for the recovery and sparse approximation of generalized exponential sums. Mathematics & Statistics, 2021, vol 336, Springer, Cham. DOI: 10.1007/978-3-030-57464-2_7

Levy E.C. 1959. "Complex-curve fitting", in IRE Transactions on Automatic Control, vol. AC-4, no. 1, pp. 37-43, doi: 10.1109/TAC.1959.6429401.

Plonka G., Tasche M. 2014. Prony methods for recovery of structured functions. GAMM-Mitteilungen, Vol. 37, Issue 2, pp 239-258, November 2014.

Rabiner L.R., Gold B. 1975. Theory and Application of Digital Signal Processing. Prentice Hall, 1975.

Sannikov V.G., Volchkov V.P. 2018. Noise stability of transmission of optimum finite signals on the linear communication channel with aliquot poles. 2018 Systems of Signal Synchronization, Generating and Processing in Telecommunications (SYNCHROINFO 2018). Item #: 40677. Publ: Institute of Electrical and Electronics Engineers (IEEE), POD Publ: Curran Associates, Inc. (Oct 2018)

Sannikov V.G., Volchkov V.P. 2019. Digital Coherent Modem with Space-Time Transmission and Reception of Optimal Finite Signals. Systems of Signal Synchronization, Generating and Processing in Telecommunications (SYNCHROINFO)", Russia, 2019, pp. 1–5. (doi: 10.1109/SYNCHROINFO. 2019.8814114)

Sannikov V.G., Volchkov V.P. 2020. Multi-Carrier Modulations Digital Modem with the narrow-band Optimal Signals and high spectral energy Efficiency. 22th International Conference on Digital Signal Processing and its Applications (DSPA). Pub.: IEEE. 06 October 2020, Moscow, Russia, INSPEC Accession Number: 20032586, doi: 10.1109/DSPA48919.2020.9213281.

Hu S.-L. James, Yang W.-L., Li H.-J. 2013. Signal. decomposition and reconstruction using complex exponential models. Mechanical Systems and Signal Processing 40(2):421-438, November 2013. DOI:10.1016/j.ymssp.2013.06.037.

Skrzipek M.-R. 2017. Signal recovery by discrete approximation and a Prony-like method. December 2017 Journal of Computational and Applied Mathematics 326(3–4): 193-203. DOI:10.1016/j.cam. 2017.05.029

Skrzipek M.-R. 2021. Parameter estimation and signal reconstruction. September 2021, Calcolo 58(3). DOI:10.1007/s10092-021-00431-8.

Ahn S., Koh J. 2022. RCS Prediction Using Prony Method in High-Frequency Band for Military Aircraft Models. Gyeongsang National University. November 2022. DOI:10.3390/aerospace9110734

Lin T., Li Yu., Lin Yu., Jian Ch. 2022. Magnetic resonance sounding signal extraction using the shaping-regularized Prony method. August 2022. Geophysical Journal International 231(3). DOI:10.1093/gji/ggac317.

Volchkov V. et al. 2019. Improving the Noise Immunity of the Modem with the Optimal Finite Signals that do not Cause Intersymbol Interference in a Linear Communication Channel., 2019 24th Conference of Open Innovations Association (FRUCT), Moscow, Russia: 502–508. Item #: 48657. Publ: Institute of Electrical and Electronics Engineers (IEEE), POD Publ: Curran Associates, Inc.

Volchkov V. et al. 2019. Presentation and Analysis of Continuous Signals in the Space of Complex Exponential Models. 2019 Systems of Signal Synchronization, Generating and Processing in Telecommunications (SYNCHROINFO)", Russia, 2019, pp. 1–6. (doi: 10.1109/SYNCHROINFO.2019.8813941)

Volchkov V. et al. 2019. Synthesis of Real Weyl-Heisenberg Signal Frames with Desired Frequency-Time Localization, 2019 24th Conference of Open Innovations Association (FRUCT), Moscow, Russia: 502–508. Publ: Institute of Electrical and Electronics Engineers (IEEE), (doi:10.23919/FRUCT.2019.8711969)

Volchkov V.P., Sannikov V.G. 2018. Algebraic approach to the optimal synthesis of real signal Weyl-Heisenberg bases. Systems of Signal Synchronization, Generating and Processing in Telecommunications (SYNCHROINFO 2018). Publ: Institute of Electrical and Electronics Engineers (IEEE), POD Publ: Curran Associates, Inc. (Oct 2018): 135–142.

Volchkov V.P., Sannikov V.G. 2020. Synthesises of a Frequency-Time Filter Bank Based on Weyl-Heisenberg Complex Bases. 22th International Conference on Digital Signal Processing and its Applications (DSPA)." Pub.: IEEE. 06 October 2020, Moscow, Russia, INSPEC Accession Number: 20032584, doi: 10.1109/DSPA48919.2020.9213251.

Volchkov V.P., Sannikov V.G., Manonina I.V. 2019. Presentation and Analysis of Continuous Signals in the Space of Complex Exponential Models. "2019 Systems of Signal Synchronization, Generating and Processing in Telecommunications (SYNCHROINFO) ", Russia, 2019, pp. 1-6. doi: 10.1109/SYNCHROINFO.2019.8813941.


Abstract views: 45

Share

Published

2023-09-30

How to Cite

Volchkov, V. P., & Potapova, E. A. (2023). Modified Proni Method with a Correctional Control Signal. Economics. Information Technologies, 50(3), 712-730. https://doi.org/10.52575/2687-0932-2023-50-3-712-730

Issue

Section

INFOCOMMUNICATION TECHNOLOGIES