Experimental Studies on the Recognition of Small-Sized Objects in Video Images Using Multidimensional Spatial-Subband Vectors

Authors

  • Vera A. Goloschapova Belgorod National Research University
  • Alexander N. Zalivin Belgorod National Research University
  • Evgeniy M. Mamatov Belgorod National Research University
  • Ivan I. Oleynik Belgorod National Research University

DOI:

https://doi.org/10.52575/2687-0932-2022-49-2-432-440

Keywords:

decision function, evaluation, recognition, experimental studies, vector, covariance matrix, subband

Abstract

A decisive rule has been developed for recognizing small-sized objects in video images, which allows recognizing various small-sized objects in video images with high quality indicators. The input data for the decisive rule are samples of spatially subband vectors formed from the image of objects. Experimental studies of the decisive function are carried out using images with various small-sized objects located on them. The obtained numerical values of the logarithm of the likelihood ratio used to make a decision on object recognition are given. Experimental studies have shown that the largest values of the logarithm of the likelihood ratio are located proportionally to those pixels of the image under study on which the object on which the training was conducted is located. The developed decisive rule makes it possible to recognize various small-sized objects on video images with high quality indicators. The developed approach to the construction of the decision rule allows us to use optimal solutions and use the Neumann-Pearson criterion to set the threshold level. Experimental studies using in-situ data confirm the capabilities of the developed decisive rule for the recognition of small-sized objects in video images.

Downloads

Download data is not yet available.

Author Biographies

Vera A. Goloschapova, Belgorod National Research University

Senior Lecturer of the Department of Information and Telecommunication Systems and Technologies, Belgorod State National Research University,
Belgorod, Russia

Alexander N. Zalivin, Belgorod National Research University

Candidate of Technical Sciences, Associate Professor of the Department of Information and Telecommunication Systems and Technologies, Belgorod National Research University,
Belgorod, Russia

Evgeniy M. Mamatov, Belgorod National Research University

Candidate of Technical Sciences, Associate Professor, Associate Professor of the Department of Applied Informatics and Information Technology, Belgorod State National Research University,
Belgorod, Russia

Ivan I. Oleynik, Belgorod National Research University

Candidate of Technical Sciences, Associate Professor of the Department of Information and Telecommunication Systems and Technologies, Belgorod National Research University,
Belgorod, Russia

References

Васин Ю.Г., Лебедев Л.И. 2007. Распознавание объектов составных изображений на основе структурных и корреляционно-экстремальных методов. Сборник докладов 13-й Всероссийской конференции «Математические методы распознавания образов» (MMRO-13), Зеленогорск, 148: 285–288.

Гиренко А.В., Ляшенко В.В., Машталир В.П., Путятин Е.П. 1996. Методы корреляционного обнаружения объектов. Харьков, АО «Бизнесинформ»: 112.

Фомин Я.А., Тарловский Г.Р. 1986. Статистическая теория распознавания образов. Москва, Радио и связь: 264.

Фурман Я.А. 2004. Введение в контурный анализ и его применение к обработке изображений и сигналов, ФИЗМАТЛИТ: 456.

Burdanova E.V., Zhilyakov E.G., Mamatov A.V., Nemtsev A.N., Oleynik I.I. 2019. Decisive rule experimental studies to detect objects on the background of the earth surface using polarization differences of radar signals. COMPUSOFT. An International Journal of Advanced Computer Technology, 8(6): 3166–3170.

Goloschapova V.A., Kalashnikov P.A., Oleynik I.I. 2020. Parametric decision rules for object recognition in multi-dimensional vector representation of color images. Science, Educatition, Practice: materials of the International University Science Forum (Canada, Toronto), May 27: 238–246.

Zalivin A.N., Oleynik I.I., Pirogenko Y.A. 2020. Decision rule for recognizing small objects based on subband processing of radar signals. Science, Educatition, Practice: materials of the International University Science Forum (Canada, Toronto), April 22: 197–207.

Zhilyakov E.G. 2015. Optimal subband methods for analyzing and synthesizing signals of finite duration. Automation and Telemechanics, 4: 51–66.

Zhilyakov E.G., Belov S.P., Oleinik I.I., Babarinov S.L., Trubitsyna D.I. 2020. Generalized sub band analysis and signal synthesis. Bulletin of Electrical Engineering and Informatics, 1(9): 78–86.

Zhilyakov E.G., Belov S.P., Oleinik I.I., Prokhorenko E.I. 2019. Regularization of Inverse Signal Recovery Problems, HELIX the Scientific Explorer, 9 (2): 4883–4889.


Abstract views: 141

Share

Published

2022-06-30

How to Cite

Goloschapova, V. A., Zalivin, A. N., Mamatov, E. M., & Oleynik, I. I. (2022). Experimental Studies on the Recognition of Small-Sized Objects in Video Images Using Multidimensional Spatial-Subband Vectors. Economics. Information Technologies, 49(2), 432-440. https://doi.org/10.52575/2687-0932-2022-49-2-432-440

Issue

Section

INFOCOMMUNICATION TECHNOLOGIES

Most read articles by the same author(s)