Экспериментальные исследования по распознаванию малоразмерных объектов на видеоизображениях при использовании многомерных пространственно-субполосных векторов
DOI:
https://doi.org/10.52575/2687-0932-2022-49-2-432-440Ключевые слова:
решающая функция, оценка, распознавание, экспериментальные исследования, вектор, ковариационная матрица, субполосныйАннотация
Разработано решающее правило для распознавания малоразмерных объектов на видеоизображениях, которое позволяет распознавать различные малоразмерные объекты на видеоизображениях с высокими показателями качества. Входными данными для решающего правила являются выборки пространственно-субполосных векторов, сформированных по изображению объектов. Проводятся экспериментальные исследования решающей функции с использованием изображений с находящимися на них различными малоразмерными объектами. Приводятся полученные численные значения логарифма отношения правдоподобия, используемые для принятия решения о распознавании объекта. Экспериментальные исследования показали, что наибольшие значения логарифма отношения правдоподобия располагаются пропорционально тем пикселям исследуемого изображения, на которых находится объект, по которому было проведено обучение. Экспериментальные исследования с использованием натурных данных подтверждают возможности разработанного решающего правила по распознаванию малоразмерных объектов на видеоизображениях. Показано, что разработанное решающее правило позволяет проводить распознавание малоразмерных объектов на видеоизображениях при проведении априорного обучения.
Скачивания
Библиографические ссылки
Васин Ю.Г., Лебедев Л.И. 2007. Распознавание объектов составных изображений на основе структурных и корреляционно-экстремальных методов. Сборник докладов 13-й Всероссийской конференции «Математические методы распознавания образов» (MMRO-13), Зеленогорск, 148: 285–288.
Гиренко А.В., Ляшенко В.В., Машталир В.П., Путятин Е.П. 1996. Методы корреляционного обнаружения объектов. Харьков, АО «Бизнесинформ»: 112.
Фомин Я.А., Тарловский Г.Р. 1986. Статистическая теория распознавания образов. Москва, Радио и связь: 264.
Фурман Я.А. 2004. Введение в контурный анализ и его применение к обработке изображений и сигналов, ФИЗМАТЛИТ: 456.
Burdanova E.V., Zhilyakov E.G., Mamatov A.V., Nemtsev A.N., Oleynik I.I. 2019. Decisive rule experimental studies to detect objects on the background of the earth surface using polarization differences of radar signals. COMPUSOFT. An International Journal of Advanced Computer Technology, 8(6): 3166–3170.
Goloschapova V.A., Kalashnikov P.A., Oleynik I.I. 2020. Parametric decision rules for object recognition in multi-dimensional vector representation of color images. Science, Educatition, Practice: materials of the International University Science Forum (Canada, Toronto), May 27: 238–246.
Zalivin A.N., Oleynik I.I., Pirogenko Y.A. 2020. Decision rule for recognizing small objects based on subband processing of radar signals. Science, Educatition, Practice: materials of the International University Science Forum (Canada, Toronto), April 22: 197–207.
Zhilyakov E.G. 2015. Optimal subband methods for analyzing and synthesizing signals of finite duration. Automation and Telemechanics, 4: 51–66.
Zhilyakov E.G., Belov S.P., Oleinik I.I., Babarinov S.L., Trubitsyna D.I. 2020. Generalized sub band analysis and signal synthesis. Bulletin of Electrical Engineering and Informatics, 1(9): 78–86.
Zhilyakov E.G., Belov S.P., Oleinik I.I., Prokhorenko E.I. 2019. Regularization of Inverse Signal Recovery Problems, HELIX the Scientific Explorer, 9 (2): 4883–4889.
Просмотров аннотации: 141
Поделиться
Опубликован
Как цитировать
Выпуск
Раздел
Copyright (c) 2022 Экономика. Информатика
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.