Software complex for constructing quasi-linear regressions according to the criteria of accuracy and non-linearity

Authors

  • Anna V. Karaulova Irkutsk State Transport University
  • Mikhail P. Bazilevskiy Irkutsk State Transport University

DOI:

https://doi.org/10.52575/2687-0932-2022-49-1-121-133

Keywords:

regression model, quasi-linear regression, coefficient of determination, criterion of non-linearity, Student's t-test, interpretation, freight rail transportation

Abstract

This article is devoted to the problem of choosing structural specifications for quasi-linear regression models. Such regressions are fairly easy to estimate, but the presence of non-linear transformations of variables in them makes it difficult to interpret their estimates. Previously, the authors formulated a two-criterion problem of choosing the specification for quasi-linear regression, which consists in maximizing the coefficient of determination and simultaneously minimizing the general criterion of nonlinearity. For a large number of variables, such a formulation turns into a complex computational problem. In this paper, we describe for the first time a software complex developed by us that fully automates the solution of a two-criteria problem. It provides work in two modes. In the first of them, a Pareto set is formed, with the help of which the user can visually trace the sequential transformation of a linear regression into a nonlinear model and choose the most acceptable alternative. In the second mode, all significantly non-linear regressions are first automatically excluded, and the best one according to the determination criterion is selected from the remaining ones. In both modes, it is possible to exclude models with coefficients that are insignificant according to Student's t-test. With the help of the software complex, the problem of modeling freight rail transportation in the Irkutsk region was successfully solved.

Downloads

Download data is not yet available.

Author Biographies

Anna V. Karaulova, Irkutsk State Transport University

Postgraduate Student of the Department of Information Systems and Information Protection, Irkutsk State Transport University,
Irkutsk, Russia

Mikhail P. Bazilevskiy, Irkutsk State Transport University

Candidate of Technical Sciences, Associate Professor of the Department of Mathematics, Irkutsk State Transport University,
Irkutsk, Russia

References

Баенхаева А.В., Базилевский М.П., Носков С.И. 2016. Выбор структурной спецификации регрессионной модели валового регионального продукта Иркутской области. Информационные технологии и проблемы математического моделирования сложных систем, 16: 31–38.

Базилевский М.П. 2018. Критерии нелинейности квазилинейных регрессионных моделей. Моделирование, оптимизация и информационные технологии, 6 (4): 185–195. DOI: 10.26102/2310-6018/2018.23.4.015

Базилевский М.П., Караулова А.В. 2021. Выбор оптимального соотношения между точностью и нелинейностью при построении квазилинейных регрессионных моделей. Вестник кибернетики, 4 (44): 63–70.

Базилевский М.П., Носков С.И. 2012. Методические и инструментальные средства построения некоторых типов регрессионных моделей. Системы. Методы. Технологии, 1: 80–87.

Носков С.И. 2021. Динамический критерий согласованности поведения при оценке адекватности регрессионных моделей. Вестник Технологического университета, 24 (7): 103–105.

Носков С.И. 2021. Реализация конкурса регрессионных моделей с применением критерия согласованности поведения. Вестник Воронежского государственного университета. Серия: Системный анализ и информационные технологии, 2: 153–160.

Носков С.И. 1996. Технология моделирования объектов с нестабильным функционированием и неопределенностью в данных. Иркутск, Облинформпечать, 321 с.

Носков С.И., Врублевский И.П. 2016. Регрессионная модель динамики эксплуатационных показателей функционирования железнодорожного транспорта. Современные технологии. Системный анализ. Моделирование, 2 (50): 192–197.

Щербанин Ю. А., Ивин Е.А., Курбацкий А.Н., Глазунова А.А. 2017. Эконометрическое моделирование и прогнозирование спроса на грузовые перевозки в России в 1992–2015 гг. Научные труды: Институт народнохозяйственного прогнозирования РАН, 15.

Borowiak D. S. 2020. Model discrimination for nonlinear regression models. CRC Press.

Brook R. J., Arnold G. C. 2018. Applied regression analysis and experimental design. CRC Press.

Cavanaugh J. E., Neath A. A. 2019. The Akaike information criterion: Background, derivation, properties, application, interpretation, and refinements. Wiley Interdisciplinary Reviews: Computational Statistics, 11 (3): e1460. https://doi.org/10.1002/wics.1460

Chicco D., Warrens M. J., Jurman G. 2021. The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Computer Science 7: e623. https://doi.org/10.7717/peerj-cs.623

Gao H., Zhang M., Goodchild A. 2020. Empirical Analysis of Relieving High-Speed Rail Freight Congestion in China. Sustainability, 12 (23): 9918. https://doi.org/10.3390/su12239918

Khan M. Z., Khan F. N. 2020. Estimating the demand for rail freight transport in Pakistan: A time series analysis. Journal of Rail Transport Planning & Management, 14: 100176. https://doi.org/10.1016/j.jrtpm.2019.100176

Lawrence K. D. 2019. Robust regression: analysis and applications. Routledge.

Lee H. K., Kim H. B. 2018. The impacts of rail freight rate changes on regional economies, modal shift, and environmental quality in Korea. International Journal of Urban Sciences, 22 (4): 517–528. https://doi.org/10.1080/12265934.2018.1476176

Mize T. D. 2019. Best practices for estimating, interpreting, and presenting nonlinear interaction effects. Sociological Science, 6: 81–117. http://dx.doi.org/10.15195/v6.a4

Montgomery D. C., Peck E. A., Vining G. G. 2021. Introduction to linear regression analysis. John Wiley & Sons.

Pompigna A., Mauro R. 2020. Input/Output models for freight transport demand: a macro approach to traffic analysis for a freight corridor. Archives of Transport, 54 (2): 21–42. DOI: 10.5604/01.3001.0014.2729


Abstract views: 125

Share

Published

2022-03-30

How to Cite

Karaulova, A. V., & Bazilevskiy, M. P. (2022). Software complex for constructing quasi-linear regressions according to the criteria of accuracy and non-linearity. Economics. Information Technologies, 49(1), 121-133. https://doi.org/10.52575/2687-0932-2022-49-1-121-133

Issue

Section

COMPUTER SIMULATION HISTORY