Analysis of the Stability of Steganographic Methods for Protecting Digital Images under Conditions of External Influences
DOI:
https://doi.org/10.52575/2687-0932-2025-52-2-476-484Keywords:
steganography, control information, digital images, image protection, image authentication, resistance to external influences, LSB method, Koch and Zhao method, spectrum expansion method, digital watermark, image noise, PSNR, SSIMAbstract
This article analyzes the stability of control information embedded in digital images to external influences using various steganographic methods. The principles of introducing control information into images using popular steganography methods such as least significant bit substitution (LSB), the Koch and Zhao method, and the spectrum expansion method are considered. The study involves extracting control information from digital images that have been subjected to preliminary noise overlay. The main focus is on assessing the stability of each of the methods in conditions where the stegocontainer (an image with embedded information) is exposed to noise. The results of the study are presented in the form of graphs demonstrating the dependence of the probability of extracting an error from a stegocontainer on the level of pre-applied noise. The comparative assessment allows us to draw conclusions about the comparative effectiveness and resistance of each of the methods to external influences, which may be useful for developing more reliable methods of protecting digital images.
Downloads
References
Список литературы
Гонсалес Р., Вудс Р. 2006. Цифровая обработка изображений; пер. с англ. П.А. Чочиа. М.: Техносфера, 1070 с.
ГОСТ Р 7.0.1-2003. ЗНАК ОХРАНЫ АВТОРСКОГО ПРАВА Общие требования и правила оформления. https://docs.cntd.ru/document/1200032004
Грибунин В.Г., Оков И.Н., Туринцев И.В. 2009. Цифровая стеганография. М.: СОЛОН-ПРЕСС, 265 с.
Демидчук А.И., Чернявский Ю.А. 2012. Алгоритм поиска в изображениях скрытых данных, встроенных методом Коха-Жао. Информатика, 1(33): 39–46.
Иванова Л.В., Семенов Н.С. 2021. Применение метода расширения спектра в системе связи на основе прямой последовательности. Журнал связи, 25(2): 45–50
Конахович Г.Ф. Пузыренко А.Ю. 2006. Компьютерная стеганография. Теория и практика: Учебно-практическое пособие. К.: МК-Пресс, 288 с.
Левин В.А. 2021.Стеганография и цифровые водяные знаки. Научный мир, 150–175.
Федосенко М.Ю. 2023. Обзор перспектив использования стеганографии в качестве инструмента обмена скрытыми данными в процессе осуществления неправомерных действий. Сборник тезисов докладов конгресса молодых ученых. Электронное издание. – СПб: Университет ИТМО. URL: https://kmu.itmo.ru/digests/article/9974
Шелухин О.И., Канаев. С.Д. 2024.Стеганография. Алгоритмы и программная реализация. М.: Горячая линия – Телеком, 592 с.
Avcibas I., Sankur B., Sayood K. 2002. Statistical evaluating of image quality measures. Journal of Electronic Imaging, 11(2): 206–223.
Koch E., Zhao J. 1995. Towards Robust and Hidden Image Copyright Labeling. IEEE Workshop on Nonlinear Signal and Image Processing, P. 123–132.
Mohammad A.B., Al-Halabi T., Monthy M. 2019. Comparative Analysis of PSNR and SSIM for Image Quality Assessment. Journal of Mathematics and Computer Science, 54–62.
Tanchenko A. 2014. Visual-PSNR measure of image quality. Journal of Visual Communication and Image Representation, 25(5): 874–878.
Zhao J., Koch E. 1995. Embedding Robust Labels into Images for Copyright Protection. Proc. of the Int. Congress on Intellectual Property Rights for Specialized Information, Knowledge and New Technologies. Munich, Vienna, P. 242–252.
Wang Zh., Bovik A.C., Sheikh H. R., Simoncelli E.P. 2004. Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE transactions on image processing, 13(4):600–12. doi: 10.1109/tip.2003.819861.
References
Gonzalez R., Woods R. 2006. Digital image processing; translated from English by P.A. Choc. M.: Technosphere, 1070 p.
GOST R 7.0.1-2003. COPYRIGHT PROTECTION MARK General requirements and design rules. https://docs.cntd.ru/document/1200032004
Gribunin V.G., Okov I.N., Turintsev I.V. 2009. Digital steganography, Moscow: SOLON PRESS, 265 p.
Demidchuk A.I., Chernyavsky Yu.A. 2012. An algorithm for searching hidden data embedded in images using the Koch-Zhao method. Informatics, 1(33): 39–46.
Ivanova L.V., Semenov N.S. 2021. Application of the spectrum expansion method in a direct sequence communication system. Communication journal. 25(2): 45–50
Konakhovich G.F. Puzyrenko A.Yu. 2006. Computer steganography. Theory and practice: An educational and practical guide. K.: MK-Press, 288 p.
Levin V.A. 2021. Steganography and digital watermarks. Scientific World, 150–175.
Fedosenko M.Y. 2023. Review of the prospects of using steganography as a tool for exchanging hidden data in the process of illegal actions. Collection of abstracts of the Congress of Young Scientists. Electronic edition. – St. Petersburg: ITMO University. URL: https://kmu.itmo.ru/digests/article/9974
Shelukhin O.I., Kanaev S.D. 2024. Steganography. Algorithms and software implementation. Moscow: Hotline – Telecom, 592 p.
Avcibas I., Sankur B., Sayood K. 2002. Statistical evaluating of image quality measures. Journal of Electronic Imaging, 11(2): 206–223.
Koch E., Zhao J. 1995. Towards Robust and Hidden Image Copyright Labeling. IEEE Workshop on Nonlinear Signal and Image Processing, P. 123–132.
Mohammad A.B., Al-Halabi T., Monthy M. 2019. Comparative Analysis of PSNR and SSIM for Image Quality Assessment. Journal of Mathematics and Computer Science, 54–62.
Tanchenko A. 2014. Visual-PSNR measure of image quality. Journal of Visual Communication and Image Representation, 25(5): 874–878.
Zhao J., Koch E. 1995. Embedding Robust Labels into Images for Copyright Protection. Proc. of the Int. Congress on Intellectual Property Rights for Specialized Information, Knowledge and New Technologies. Munich, Vienna, P. 242–252.
Wang Zh., Bovik A.C., Sheikh H. R., Simoncelli E.P. 2004. Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE transactions on image processing, 13(4):600-12. doi: 10.1109/tip.2003.819861.
Abstract views: 22
Share
Published
How to Cite
Issue
Section
Copyright (c) 2025 Economics. Information Technologies

This work is licensed under a Creative Commons Attribution 4.0 International License.