Modeling the Random Component of the Campaigning Process

Authors

  • Antonina V. Ganicheva Tver State Agricultural Academy
  • Alexey V. Ganichev Tver State Technical University

DOI:

https://doi.org/10.52575/2687-0932-2025-52-2-391-399

Keywords:

model, system, Markov random process, campaigning, probability, applicant, Poisson flow, matrix, solution of the equation

Abstract

Campaigning is one of the most important issues in social processes. The relevance of this problem rises with the increase in the complexity of the tasks facing modern society. The purpose of this article is to develop a mathematical model of campaigning. The novelty of the work lies in taking into account the random component in the differential equation of the process under consideration.  An additive model based on the differential equation of mobilization has been developed, taking into consideration the random component. The solution of this equation in steady and unsteady modes is shown, taking into account the nonrandom and random components of propaganda. To explain the proposed method, a specific numerical example of two universities campaigning for future applicants is considered. The method developed in the article has sufficient simplicity of implementation and does not require the use of numerical methods for solving stochastic differential equations. It allows us to explore various tasks in the social sphere (expanding content in social networks, collecting taxes, creating a reserve fund, appealing for students to study, electioneering, involving the population in eliminating the consequences of emergency situations, etc.).

Downloads

Download data is not yet available.

Author Biographies

Antonina V. Ganicheva, Tver State Agricultural Academy

Candidate of Physical and Mathematical Sciences, Associate Professor, Professor of the Department Physical and Mathematical Disciplines and Information Technology, Tver State Agricultural Academy, Tver, Russia

E-mail: TGAN55@yandex.ru

Alexey V. Ganichev, Tver State Technical University

Senior lecturer of the Department of Informatics and Applied Mathematics, Tver State Technical University, Tver, Russia

E-mail: alexej.ganichev@yandex.ru

References

Список литературы

Вентцель Е.С. 2022. Теория вероятностей. RUGRAM, 576 c.

Ганичева А.В. 2015. Математическая модель оптимального управления резервными средствами в учебном процессе. В мире научных открытий, 12-3 (72): 953–964.

Ганичева А.В. 2018. Модель мобилизации налоговых платежей. Бизнес. Образование. Право. Вестник Волгоградского института бизнеса, 2 (43): 98–104.

Ганичева А.В. 2019. Математическая модель профориентационной работы. Современные наукоемкие технологии. Региональное приложение, 4 (60): 14–27.

Гельруд Я.Д., Шестакова Л.И. 2022. Основы математического моделирования в политической науке. Вестник Южно-Уральского государственного университета. Серия: Компьютерные технологии, управление, радиоэлектроника, 1: 116–124.

Данко П.Е., Попов А.Г., Кожевникова Т.Я. 2003. Высшая математика в упражнениях и задачах: Учеб. пособие для студентов втузов. В 2-х ч. Ч. II. Москва: «ОНИКС 21 век»: «Мир и Образование», 418 с.

Кремер Н.Ш. 2025. Теория вероятностей и математическая статистика: учебник и практикум для вузов. Москва: Юрайт, 538 с.

Логинов К.О. 2022. Численное решение задачи фильтрации оценок информационного воздействия на электорат. Информатика и автоматизация, 21 (3): 624–652.

Лукшин А.В., Смирнов С.Н. 1990. Численные методы решения стохастических дифференциальных уравнений. Математическое моделирование, 2 (11): 108–121.

Магомедова Е.С., Магомедов Р.И. 2024. Стохастическая модель общественно-политической мобилизации. Актуальные проблемы математики и информационных технологий: материалы Всероссийской конференции. Махачкала: Издательство ДГУ: 87–92.

Моисеев С.И. 2009. Моделирование динамики числа потребителей в условиях конкуренции, основанное на случайных процессах. Конкурентоспособность. Инновации. Финансы, 1 (1): 66–68.

Полянский И.С., Полянская И.В., Логинов К.О. 2021. Алгоритмические решения в задаче оценки информационного воздействия на электорат при проведении выборных кампаний. Физика волновых процессов и радиотехнические системы, 24 (4): 72–80.

Филиппов И., Юрескул Э., Петров А. 2020. Мобилизация протеста онлайн: построение вычислительной модели. Управление развитием крупномасштабных систем: материалы Международной конференции (MLSD). Москва: Институт проблем управления им. В.А. Трапезникова РАН: 1889–1895.

Шинкевич В.Е. 2020. Актуальность социальной мобилизации в условиях современного общества. Научный компонент, 1: 79–89.

Adnan A., Arifin A.H., Aiyub Yahya A. 2023. Mix Mobilization Model as A New Marketing Strategy in the Pandemic Era, 06 (04): 2398–2405.

Alaberdeev R.R. 2023. On the mobilization model of the economy. Public Administration. 2 (142): 75–79.

Lukashina Y. 2012. Web-Based Social Movements: Mathematical Model of Mobilization. Available at SSRN: https://ssrn.com/abstract=2089980 or http://dx.doi.org/10.2139/ssrn.2089980.

Rutherford А., Cebrian M., Dsouza S. et al. 2013. Limits of social mobilization. Proceedings of the National Academy of Sciences of the United States of America. 110 (16): 6281–6286.

Srekl J. 2014. Computational Model of Successful Mobilization of Voluntary Firefighters. Open Journal of Safety Science and Technology, 4: 42-48.

Stubbs J. 2012. The mathematical modelling of population change. The Mathematical Gazette. 96 (536): 243–250.

Ziam S., Lanoue S., McSween-Cadieux E. et al. 2024. A scoping review of theories, models and frameworks used or proposed to evaluate knowledge mobilization strategies. Health Research Policy and Systems, 22 (8): 1–18.

References

Venttsel' E.S. 2022. Teoriya veroyatnostey [Probability theory]. RUGRAM, 576 p.

Ganicheva A.V. 2015. Mathematical model of optimum control of reserve means in educational process. In the World of Scientific Discoveries, 12-3 (72): 953–964.

Ganicheva A.V. 2018. Model' mobilizatsii nalogovykh platezhey [The model of tax payment mobilization]. Biznes. Obrazovanie. Pravo. Vestnik Volgogradskogo instituta biznesa, 2 (43): 98–104.

Ganicheva A.V. 2019. Matematicheskaya model' proforientatsionnoy raboty [Mathematical model of career guidance work]. Sovremennye naukoemkie tekhnologii. Regional'noe prilozhenie, 4 (60): 14–27.

Gel'rud Ya.D., Shestakova L.I. 2022. Osnovy matematicheskogo modelirovaniya v politicheskoy nauke [Fundamentals of mathematical modeling in political science]. Vestnik Yuzhno-Ural'skogo gosudarstvennogo universiteta. Seriya: Komp'yuternye tekhnologii, upravlenie, radioelektronika, 1: 116–124.

Danko P.E., Popov A.G., Kozhevnikova T.Ya. 2003. Vysshaya matematika v uprazhneniyakh i zadachakh: Ucheb. posobie dlya studentov vtuzov [Higher mathematics in exercises and tasks: A textbook for university students.]. V 2-kh ch. Ch. II. Moskva: «ONIKS 21 vek»: «Mir i Obrazovanie», 418 p.

Kremer N.Sh. 2025. Teoriya veroyatnostey i matematicheskaya statistika: uchebnik i praktikum dlya vuzov [Probability theory and mathematical statistics: textbook and practical course for universities]. Moskva: Yurayt, 538 p.

Loginov K.O. 2022. Chislennoe reshenie zadachi fil'tratsii otsenok informatsionnogo vozdeystviya na elektorat [Numerical solution of the problem of filtering estimates of information impact on the electorate]. Informatika i avtomatizatsiya, 21 (3): 624–652.

Lukshin A.V., Smirnov S.N. 1990. Chislennye metody resheniya stokhasticheskikh differentsial'nykh uravneniy [Numerical methods for solving stochastic differential equations]. Matematicheskoe modelirovanie, 2 (11): 108–121.

Magomedova E.S., Magomedov R.I. 2024. Stokhasticheskaya model' obshchestvenno-politicheskoy mobilizatsii [Stochastic model of socio-political mobilization]. Aktual'nye problemy matematiki i informatsionnykh tekhnologiy: materialy Vserossiyskoy konferentsii. Makhachkala: Izdatel'stvo DGU: 87–92.

Moiseev S.I. 2009. Modelirovanie dinamiki chisla potrebiteley v usloviyakh konkurentsii, osnovannoe na sluchaynykh protsessakh [Modeling the dynamics of the number of consumers in a competitive environment based on random processes]. Konkurentosposobnost'. Innovatsii. Finansy, 1 (1): 66–68.

Polyanskiy I.S., Polyanskaya I.V., Loginov K.O. 2021. Algoritmicheskie resheniya v zadache otsenki informatsionnogo vozdeystviya na elektorat pri provedenii vybornykh kampaniy [Algorithmic solutions to the problem of assessing the information impact on the electorate during election campaigns]. Fizika volnovykh protsessov i radiotekhnicheskie sistemy, 24 (4): 72–80.

Filippov I., Yureskul E., Petrov A. 2020. Mobilizatsiya protesta onlayn: postroenie vychislitel'noy modeli [Online Protest Mobilization: Building a computational model]. Upravlenie razvitiem krupnomasshtabnykh sistem: materialy Mezhdunarodnoy konferentsii (MLSD). Moskva: Institut problem upravleniya im. V.A. Trapeznikova RAN: 1889–1895.

Shinkevich V.E. 2020. Aktual'nost' sotsial'noy mobilizatsii v usloviyakh sovremennogo obshchestva [The relevance of social mobilization in modern society]. Nauchnyy komponent, 1: 79–89.

Adnan A., Arifin A.H., Aiyub Yahya A. 2023. Mix Mobilization Model as A New Marketing Strategy in the Pandemic Era, 06 (04): 2398–2405.

Alaberdeev R.R. 2023. On the mobilization model of the economy. Public Administration. 2 (142): 75–79.

Lukashina Y. 2012. Web-Based Social Movements: Mathematical Model of Mobilization. Available at SSRN: https://ssrn.com/abstract=2089980 or http://dx.doi.org/10.2139/ssrn.2089980.

Rutherford А., Cebrian M., Dsouza S. et al. 2013. Limits of social mobilization. Proceedings of the National Academy of Sciences of the United States of America. 110 (16): 6281–6286.

Srekl J. 2014. Computational Model of Successful Mobilization of Voluntary Firefighters. Open Journal of Safety Science and Technology, 4: 42–48.

Stubbs J. 2012. The mathematical modelling of population change. The Mathematical Gazette. 96 (536): 243–250.

Ziam S., Lanoue S., McSween-Cadieux E. et al. 2024. A scoping review of theories, models and frameworks used or proposed to evaluate knowledge mobilization strategies. Health Research Policy and Systems, 22 (8): 1–18.


Abstract views: 10

Share

Published

2025-06-30

How to Cite

Ganicheva, A. V., & Ganichev, A. V. (2025). Modeling the Random Component of the Campaigning Process. Economics. Information Technologies, 52(2), 391-399. https://doi.org/10.52575/2687-0932-2025-52-2-391-399

Issue

Section

COMPUTER SIMULATION HISTORY