Support Contours for Image Feature Extraction in Object Classification
DOI:
https://doi.org/10.52575/2687-0932-2025-52-2-383-390Keywords:
support contours, image classification, contour approximation, polyhedrons, invariance, pattern recognitionAbstract
A method of support contours for classifying images of objects with an a priori undefined shape is presented. The method is based on a two-level approximation of contours using support points, which form unique polyhedrons for each class. The first level approximates the contour with a support polyhedron, identifying key points, while the second level divides the contour into segments, which are approximated by segmental polyhedrons. This enables automatic object classification by comparing their contours within the corresponding classes. Key advantages of the method are highlighted: invariance to affine transformations, reduction in the number of polyhedron vertices, and improved classification speed due to natural parallelization of computations. The method also addresses the shortcomings of existing approaches, such as dependency on the starting point and algorithmic complexity. The application of the method is demonstrated in pattern recognition tasks where object shape plays a critical role, such as in robotics, technical diagnostics, and medical diagnostics. The research results show that the proposed approach is effective for classifying objects with arbitrary shapes and can be used in intelligent image processing systems.
Downloads
References
Список литературы
Гонсалес Р., Вудс Р. 2005. Цифровая обработка изображений. Москва: Техносфера, 2005. 1072 с.
Золотин К.А. 2016. Контурный анализ и его применение для распознавания объектов. Наука XXI века, 2: 6–9.
Кушнир О.А. 2012. Сравнение формы бинарных растровых изображений на основе скелетизации. Машинное обучение и анализ данных, М.: Вычислительный центр им. А.А. Дородницына Российской Академии Наук, 1(3): 128–140.
Местецкий Л.М. 2009. Непрерывная морфология бинарных изображений: фигуры, скелеты, циркуляры. М.: Физматлит, 288.
Нигматулин Р.Р. 2020. Компьютерная графика. КФУ ИВМ и ИГ, Казань, URL:https://repository.kpfu.ru/?p_id=232202
Сафонов А.С. 2017. Построение SIFT-дескрипторов и нахождение особых точек на изображениях. Известия Тульского государственного университета. Технические науки, вып. 2: 182–188.
Соболев В.А., Тропкина Е.А. 2022. Нелинейные динамические системы. Самара: изд-во Самарского гос. университета, 76 с.
Титов А.И., Корсунов Н.И., Щербинина Н.В. 2025. Разбиение контура изображения графического объекта на фрагменты в задачах классификации. Научный результат. Информационные технологии, 10(1): 16–23. DOI: 10.18413/2518-1092-2025-10-1-0-2.
Титов А.И., Корсунов Н.И. 2022. Метод распознавания объектов в системах технического зрения роботов. Экономика. Информатика, 49(4): 782–787. DOI: 10.52575/2687-0932-2022-49-4-782-787.
Хайкин С. 2006. Нейронные сети: полный курс, 2-е изд. испр. Пер. с англ. М.: ООО «И.Д. Вильямс», 1104 с.
References
Gonzalez R., Woods R. 2005. Digital Image Processing. Moscow: Tekhnosfera, 2005. 1072 p. (in Russian)
Zolotin K.A. 2016. Contour Analysis and Its Application in Object Recognition. Nauka XXI Veka, 2: 6–9. (in Russian)
Kushnir O.A. 2012. Shape Comparison of Binary Raster Images Based on Skeletonization. Machine Learning and Data Analysis, Moscow: Computing Center of the Russian Academy of Sciences, 1(3): 128–140. (in Russian)
Mestetskiy L.M. 2009. Continuous Morphology of Binary Images: Figures, Skeletons, Circulars. Moscow: Fizmatlit. 288. (in Russian)
Nigmatulin R.R. 2020. Computer Graphics. Kazan Federal University, Institute of Computational Mathematics and Information Technologies, Kazan (in Russian). URL:https://repository.kpfu.ru/?p_id=232202
Safonov A.S. 2017. Construction of SIFT Descriptors and Detection of Keypoints in Images. Izvestiya Tul'skogo gosudarstvennogo universiteta. Tekhnicheskie nauki, iss. 2: 182–188 (in Russian).
Sobolev V.A., Tropkina E.A. 2022. Nonlinear Dynamical Systems. Samara: Samara State University Press, 76 p. (in Russian)
Titov A.I., Korsunov N.I., Shcherbinina N.V. 2025. Contour Segmentation of Graphic Object Images in Classification Problems. Research Result. Information Technologies, 10(1): 16–23. DOI: 10.18413/2518-1092-2025-10-1-0-2. (in Russian)
Titov A.I., Korsunov N.I. 2022. Object Recognition Method in Robotic Vision Systems. Economics. Information technologies, 49(4): 782–787. DOI: 10.52575/2687-0932-2022-49-4-782-787. (in Russian)
Haykin S. 2006. Neural Networks: A Comprehensive Foundation, 2nd ed. Transl. from English. Moscow: Williams Publishing House, 1104 p. (in Russian)
Abstract views: 10
Share
Published
How to Cite
Issue
Section
Copyright (c) 2025 Economics. Information Technologies

This work is licensed under a Creative Commons Attribution 4.0 International License.