Estimation the Impulse Response of a Wireless Channel Using an Orthogonal Subband Basis

Authors

  • Denis V. Ursol Industrial Electronic Systems LLC
  • Evgeniya V. Bolgova Belgorod State National Research University

DOI:

https://doi.org/10.52575/2712-746X-2023-50-4-936-943

Keywords:

impulse response, Fourier transform, convolution, orthogonal subband basis, inverse matrix, pseudo-inverse matrix, standard deviation, nonlinear distortion

Abstract

The article discusses a method for estimating the impulse response of a communication channel based on signal-code structures formed using an orthogonal subband basis. The orthogonal basis consists of eigenvectors of a subband matrix calculated for a given frequency range with a minimum level of out-of-band radiation. For an orthogonal basis, eigenvectors are selected whose eigenvalues are close to or equal to one. Estimation of the channel impulse response is based on solving a system of linear equations, where the transmitted information is known. Since out-of-band emission is minimal, this basis is optimal for channel estimation. The orthogonality of the vectors and their occupation of the entire frequency range allows the use of only one pilot signal to estimate the impulse response of the entire channel. The effectiveness metric of the proposed method is the standard deviation between the obtained estimate and the applied distortion. The experimental results show the effectiveness of the developed method for estimating the impulse response of a channel in the presence of different levels of Additive white Gaussian noise (AWGN).

Downloads

Download data is not yet available.

Author Biographies

Denis V. Ursol, Industrial Electronic Systems LLC

Candidate of Technical Sciences, software engineer, Industrial Electronic Systems LLC,
Belgorod, Russia

Evgeniya V. Bolgova, Belgorod State National Research University

Candidate of Technical Sciences, Associate Professor of the Department of Applied Informatics and Information Technologies, Belgorod State National Research University,
Belgorod, Russia

References

Ермолаев В.Т., Флаксман А.Г. 2011. Теоретические основы обработки сигналов в беспроводных системах связи: Монография. Нижний Новгород: Изд-во ННГУ им. Н.И. Лобачевского. – 368 с.

Жиляков Е.Г., Урсол Д.В., Магергут В.З. 2012. Разработка нового способа формирования сигналов для систем доступа к широкополосным мультимедийным услугам. Научные ведомости БелГУ. Серия История. Политология. Экономика. Информатика. №19-1 (138), с. 207-211

Урсол Д.В. 2012. Метод обеспечения помехоустойчивости информационных коммуникаций при субполосной передаче информации. Дис. канд. техн. наук: 05.13.17 – Теоретические основы информатики. Белгород.

Урсол Д.В. 2021. О помехоустойчивости сигнально-кодовых конструкций для систем интернет вещей. Экономика. Информатика. 48(4): 822-830.

Урсол Д.В. 2022. Сигнально-кодовые конструкции для передачи информации с минимальной межканальной интерференцией. Экономика. Информатика. 48(4): 854-862

GPP TS 36.141. Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS) Conformance Testing. 3rd Generation Partnership Project; Technical Specification Group Radio Access Network. URL: https://www.3gpp.org.

Halperin D. 2010. 802.11 with Multiple Antennas for Dummies, ACM SIGCOMM Comp. Commun. Rev., vol. 40, Jan., pp. 19–25

Khaled M. Gharaibeh 2012. Nonlinear distortion in wireless systems: modeling and simulation with MATLAB , IEEE, pp.341-346

Lin Y. P., Tseng P.H., Feng K.T. 2014. Compressive sensing based location estimation using channel impulse response measurements. IEEE 25th Annual International Symposium on Personal, Indoor, and Mobile Radio Communication (PIMRC), Washington, DC, USA, pp. 2066-2070

Lv X., Li Y., Wu Y., Liang H. 2020. Kalman filter based recursive estimation of slowly fading sparse channel in impulsive noise environment for OFDM systems. IEEE Transactions on Vehicular Technology, vol. 69, no. 3, pp. 2828-2835

Maas D., Firooz M.H., Zhang J., Patwari N., Kasera S.K. 2012. Channel Sounding for the Masses: Low Complexity GNU 802.11b Channel Impulse Response Estimation. IEEE Transactions on Wireless Communications, vol. 11, no. 1, pp. 1-8, January 2012

Salous S. 2013. Data Analysis in Radio Propagation Measurement and Channel Modelling. Wiley, pp. 255-336.

Talebi F., Pratt T. 2016. Channel sounding and parameter estimation for a wideband correlation-based MIMO model. IEEE Transactions on Vehicular Technology, vol. 65, no. 2, pp. 499-508.

Tkac A., Wieser V. 2014. Channel estimation using measurement of channel impulse response. 2014 ELEKTRO, Rajecke Teplice, Slovakia, pp. 113-117

Zhang J., Kountouris M., Andrews J.G., Heath R. W. 2011. Multi-mode transmission for the MIMO broadcast channel with imperfect channel state information. Communications, IEEE Transactions on, vol. S9, no.3, pp.803-814


Abstract views: 93

Share

Published

2023-12-29

How to Cite

Ursol, D. V., & Bolgova, E. V. (2023). Estimation the Impulse Response of a Wireless Channel Using an Orthogonal Subband Basis. Economics. Information Technologies, 50(4), 936-943. https://doi.org/10.52575/2712-746X-2023-50-4-936-943

Issue

Section

INFOCOMMUNICATION TECHNOLOGIES