Use of Machine Learning Methods in Decision Making to Ensure Quality in Instrument Manufacturing

Authors

  • Konstantin A. Konev Ufa University of Science and Technology

DOI:

https://doi.org/10.52575/2687-0932-2022-49-4-820-832

Keywords:

поддержка принятия решений, машинное обучение, цифровой след, обеспечение качества, диаграмма Исикавы, классификация причин дефектов, авиационное приборостроение, метод k-ближайших соседей, Knime Analytics Platform

Abstract

Quality assurance is an important and various activity that has a significant impact on the competitiveness of both the organization's products and its management system as a whole. This activity is not a value-creating main process and is managed as a cost center, which creates objective difficulties in increasing its efficiency. Despite the large number of publications in the field of quality assurance, the topic of decision support in this area has been poorly researched and is considered mainly for high-level managers. Conceptually, the problem of increasing the efficiency of decisions is considered in a number of publications of the author. In this paper, this approach is considered for quality assurance specialists at the level of the executer or expert and is used for the first time in this formulation of the problem. The aim of the study is, in accordance with the previously proposed methodology, the formation of a situational-ontological model for solving a specific practical problem of identifying the cause of a defect for an instrument-making enterprise using the machine learning method (k-nearest neighbors). The results of the study allowed us to conclude that it is possible to use the situational ontological methodology to create a decision support system for solving problems in a typical situation of finding the cause of a defect based on the k-nearest neighbors method for a quality engineer of an instrument-making enterprise.

Downloads

Download data is not yet available.

Author Biography

Konstantin A. Konev, Ufa University of Science and Technology

Candidate of Technical Sciences, Associate Professor, Associate Professor Department of Automated Control Systems, Ufa University of Science and Technology, Ufa, Russia

References

Список источников

Snow D. 2022. Machine Learning and Data Science Applications in Industry. URL: https://github.com/firmai/industry-machine-learning (accessed 19.09.2022).

Knime Analytics Platform – open source системы для анализа данных. 2017. URL: https://habr.com/ru/post/320500/. – (Дата обращения: 07.09.2022).

Список литературы

Chen Yang, Weiming Shen, Xianbin Wang. 2018. The Internet of Things in Manufacturing: Key Issues and Potential Applications. IEEE Systems, Man, and Cybernetics Magazine. V. 4 (1): 6–15. DOI:10.1109/msmc.2017.2702391.

Kim C, Gupta R, Shah A, Madill E, Prabhu AV, Agarwal N. 2018. Digital Footprint of Neurological Surgeons. World Neurosurg, v. 113: e172–e178. doi: 10.1016/j.wneu.2018.01.210.

Madeh S. Piryonesi, Tamer E. El-Diraby. 2020. Role of Data Analytics in Infrastructure Asset Management: Overcoming Data Size and Quality Problems. Journal of Transportation Engineering, Part B: Pavements. 2020-06. V. 146, iss. 2. P. 04020022. ISSN 2573-5438 2573-5438, 2573-5438.

Negri Elisa. 2017. A review of the roles of Digital Twin in CPS-based production systems. Procedia Manufacturing. V. 11: 939–948. doi:10.1016/j.promfg.2017.07.198.

Zachman J. A. 1987. Framework for Information Systems Architecture. IBM Systems Journal 26: 276-292.

Антонов В.В., Конев К.А. 2021. Интеллектуальный метод поддержки принятия решений в типовой ситуации. Онтология проектирования. Т.11. 1(39): 126-136.

Антонов В.В., Конев К.А. Куликов Г.Г., Суворова В.А. 2021. Ситуационно-онтологическая методология принятия решений на примере бизнес-процессов авиаприборостроительного предприятия. Вестник Южно-Уральского государственного университета. Серия: Компьютерные технологии, управление, радиоэлектроника. Т. 21. 1: 102-115.

Исикава К. Японские методы управления качеством. 1988. М: «Экономика», 199 с.

Коробеев А.И., Чучаев А.И. 2018. Беспилотные транпортные средства, оснащённые системами искусственного интеллекта: проблемы правового регулирования. Азиатско-тихоокеанский регион: экономика, политика, право. Т. 20. 3: 117-132. – DOI 10.24866/1813-3274/2018-3/117-132

Толчеев В.О. 2007. Модифицированный и обобщенный метод ближайшего соседа для классификации библиографических текстовых документов. Заводская лаборатория. Диагностика материалов. Т. 75. 7: 63-70.

Флах П. Машинное обучение. 2015. М., ДМК Пресс, 400 с.


Abstract views: 155

Share

Published

2022-12-30

How to Cite

Konev, K. A. (2022). Use of Machine Learning Methods in Decision Making to Ensure Quality in Instrument Manufacturing. Economics. Information Technologies, 49(4), 820-832. https://doi.org/10.52575/2687-0932-2022-49-4-820-832

Issue

Section

SYSTEM ANALYSIS AND PROCESSING OF KNOWLEDGE