Detection of Signals Against Noise in Ultra-Wideband Radar Systems with Subband Processing Information

Authors

  • Sergey G. Orishchuk Joint-stock company «SPA» Electronic instrumentation»
  • Ivan I. Oleynik Joint-stock company «SPA» Electronic instrumentation»
  • Eraterina I. Prokhorenko Belgorod National Research University
  • Marina V. Golovko Belgorod National Research University

DOI:

https://doi.org/10.52575/2687-0932-2022-49-3-597-606

Keywords:

detection, decisive rule, estimation, noise, mathematical expectation, covariance matrix, criterion, sampling, vector, distribution, subband

Abstract

A parametric decision rule for detecting signals against noise in ultra-wideband radar systems with subband information processing has been developed. The decisive rule is based on calculating the likelihood ratio and comparing it with the threshold. Estimates of the expectation vector and the covariance matrix are used as estimates. As a criterion for deciding on the presence of a signal against the background of its own noise, the Neumann-Pearson criterion was chosen, which provides the maximum probability of correct detection of the signal, with a given probability of error of the first row. As a training sample, a sample obtained with a priori absence of a signal, obtained from its own noise, is used. Due to the independence of the frequency channels, with subband processing, the estimate of the covariance matrix obtained at the training stage has a diagonal form with an estimate of the noise level variances in the channels. A procedure has been developed for assessing the level of the decision-making threshold, which is carried out at the training stage. To do this, it is necessary to obtain estimates of the likelihood ratio in the a priori absence of a signal and select the quantile of the normal distribution for a given probability of error of the first kind.

Downloads

Download data is not yet available.

Author Biographies

Sergey G. Orishchuk, Joint-stock company «SPA» Electronic instrumentation»

Candidate of Technical Sciences, Leading Researcher of Joint-stock company «SPA» Electronic instrumentation»,
Moscow, Russia

Ivan I. Oleynik, Joint-stock company «SPA» Electronic instrumentation»

Candidate of Technical Sciences, Associate Professor of the Department of Information and Telecommunication Systems and Technologies, Belgorod National Research University,
Belgorod, Russia

Eraterina I. Prokhorenko, Belgorod National Research University

Candidate of Technical Sciences, Associate Professor, Associate Professor  of the Department of Information and Telecommunication Systems and Technologies, Belgorod National Research University,
Belgorod, Russia

Marina V. Golovko, Belgorod National Research University

Assistant of the Department of Information and Telecommunication Systems and Technologies, Belgorod National Research University,
Belgorod, Russia

References

Бакулев П.А. 2004. Радиолокационные системы. Москва. Радиотехника: 320.

Ботов М.И., Вяхирев В.А. 2013. Основы теории радиолокационных систем и комплексов. Под общ. ред. М.И. Ботова. Красноярск. Сибирский федеральный университет: 530.

Важенин В.Г. и др. 2015. Полунатурное моделирование бортовых радиолокационных систем, работающих по земной поверхности. Под общ. ред. В. Г. Важенина. Екатеринбург. Изд-во Уральского ун-та: 208.

Воскресенский Д.И. 2004. Активные фазированные антенные решетки. Под ред. Д.И. Воскресенского и А.И. Канащенкова. Москва. Радиотехника: 368.

Колосовский Е.А. 2012. Устройства приема и обработки сигналов. 2-е изд. Москва. Горячая линия –Телеком: 456.

Кошелев В.И., Сарычев В.Т., Шипилов С.Э., Якубов В.П. 2001. Оценивание информационных характеристик радиолокационных объектов при сверхширокополосном зондировании. Журнал радиоэлектроники № 5, электронный журнал, ISSN: 1684-1719.

Кузьмин С.З. 2000. Цифровая радиолокация. Введение в теорию. Киев. Издательство КВIЦ: 428.

Попов А.Н., Тетерин Д.П., Яшин А.Г., Харитонов А.Ю., Жиляков Е.Г., Олейник И.И. 2022. Субполосный способ радиолокационного обнаружения малоразмерных беспилотных летательных аппаратов. Описание изобретения к патенту RU 2765272 C1 27.01.2022.

Фомин Я.А., Тарловский Г.Р. 1986. Статистическая теория распознавания образов. Москва, Радио и связь: 264.

Фукунага К. 1979. Введение в статистическую теорию распознавания образов. Москва. Наука: 368.

Ширман Я.Д. 2007. Радиоэлектронные системы: Основы построения и теория: справочник. М. Радиотехника: 512.

Barnon David K. 2013. Radar equations for modern radar. Artech house. Boston|London: 428.

Burdanova E.V., Zhilyakov E.G., Mamatov A.V., Nemtsev A.N., Oleynik I.I. 2019. Decisive rule experimental studies to detect objects on the background of the earth surface using polarization differences of radar signals. COMPUSOFT. An International Journal of Advanced Computer Technology, 8(6): 3166–3170.

Cherniakov Mikhail. 2008. Bistatic Radar: Emerging Technology. Edited by Mikhail Cherniakov. John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England: 394.

Taylor, P.E. 2000. Ultra-wideband Radar Technology. Edited by James D. Taylor, P.E. CRC Press Boca Raton, London, New Work, Washington: 260.

Zhilyakov E.G. 2015. Optimal subband methods for analyzing and synthesizing signals of finite duration. Automation and Telemechanics, 4: 51–66.

Zhilyakov E.G., Belov S.P., Oleinik I.I., Babarinov S.L., Trubitsyna D.I. 2020. Generalized sub band analysis and signal synthesis. Bulletin of Electrical Engineering and Informatics, 1(9): 78–86.


Abstract views: 114

Share

Published

2022-09-30

How to Cite

Orishchuk, S. G., Oleynik, I. I., Prokhorenko, E. I., & Golovko, M. V. (2022). Detection of Signals Against Noise in Ultra-Wideband Radar Systems with Subband Processing Information. Economics. Information Technologies, 49(3), 597-606. https://doi.org/10.52575/2687-0932-2022-49-3-597-606

Issue

Section

INFOCOMMUNICATION TECHNOLOGIES