Estimating the Number of Terms in the Sum of Independent Random Variables when Modeling Gaussian Random Variables

Authors

DOI:

https://doi.org/10.52575/2687-0932-2022-49-3-546-557

Keywords:

sum of random variables, average sample, number of terms, characteristic function, Maclaurin series, accuracy, error, integral

Abstract

One of the most important problems in probability theory and statistics is the estimation of the number of terms of the central limit theorem necessary for the sum to have a normal probability distribution law. This problem becomes especially relevant for any previously unknown distribution laws of random variables. To solve the problem, the apparatus of characteristic functions is used. The characteristic function is represented by a complex Maclaurin series. The representation of the residual term of the series in the form of Cauchy is used. An estimate of the error of such a representation is obtained. An analytical expression is derived for the distribution density of the average sample of observations. An algorithm has been developed to determine the required number of observations depending on the accuracy of the assessment. To explain the operation of the algorithm, an example of the practical implementation of the developed method is shown. The obtained simulation results for estimating the required number of terms are summarized in a table. For clarity, the results are presented in the graph. The statements proved in the work can be used in multivariate data analysis, systems for diagnostics, monitoring, and statistical control of manufactured products.

Downloads

Download data is not yet available.

Author Biographies

Antonina V. Ganicheva, Tver State Agricultural Academy

Candidate in Physical and Mathematical Sciences, Associate Professor, Department Physical and Mathematical Disciplines and Information Technology, Tver State Agricultural Academy,
Tver, Russian Federation
ORCID: 0000-0002-0224-8945

Aleksey V. Ganichev, Tver State Technical University

Associate Professor, Department of Informatics and Applied Mathematics, Tver State Technical University,
Tver, Russian Federation

References

Волгин А.В. 2017. Улучшение оценки скорости сходимости в многомерной центральной предельной теореме для сумм локально зависимых случайных векторов. Прикладная дискретная математика, 36: 13–24.

Ганичева А.В. 2022. Оценка числа слагаемых нормальной аппроксимации сумм независимых случайных величин. Вестник Бурятского государственного университета. Математика, информатика, 1: 26–34. DOI: 10.18101/2304-5728-2022-1-26-34.

Ганичева А.В. 2020. Оценка числа слагаемых центральной предельной теоремы. Прикладная математика и вопросы управления, 4: 7–19. DOI: 10.15593/2499-9873/2020.4.01.

Гринь А.Г. 2021. О центральной предельной теореме с нелинейной масштабной нормировкой. Математические структуры и моделирование, 4 (60): 9–16. DOI: 10.24147/2222-8772.2021.4.9-16.

Пименов С.Ю., Тинаев В.В. 2017. Применение центральной предельной теоремы для компьютерного моделирования случайных сигналов. Наука и образование: новое время, 2 (19): 227–231.

Arras B., Breton J.-C., Aurelia Deshayes A., Durieu O., Lachièze-Rey R. 2020. Some recent advances for limit theorems. ESAIM Proceedings and Surveys, 68: 73–96. DOI:10.1051/proc/202068005.

Chatterjee S., Diaconis P. 2017. A central limit theorem for a new statistic on permutations. Indian J. Pure Appl. Math., 48(4): 561–573. DOI: 10.1007/s13226-017-0246-3.

Draper D., Guo E. 2021. The Practical Scope of the Central Limit Theorem. Other Statistics: 47. DOI: https://doi.org/10.48550/arXiv.2111.12267. Corpus ID: 244527194.

Fischer H. 2011. A History of the Central Limit Theorem From Classical to Modern Probability Theory. Springer Science+Business Media, LLC: 415 p. DOI 10.1007/978-0-387-87857-7.

Formanov S., Khusainova B., Sirozhitdinov A. 2021. On the numerical characteristics in the central limit theorem. AIP Conference Proceedings 2365: 060011. DOI: 10.1063/5.0058101.

Garet O. 2021. A central limit theorem for the number of descents and some urn models. Markov Processes And Related Fields, Polymat Publishing Company, 27 (5): 789–801.

Gorban I.I. 2017. The central limit theorem/ The Statistical Stability Phenomenon: 261–270. DOI:10.1007/978-3-319-43585-5_19.

Kwak S.G., Kim J.H. 2017. Central limit theorem: the cornerstone of modern statistics. Korean journal of anesthesiology. 70(2): 144. DOI:10.4097/kjae.2017.70.2.144.

Roos B. 2022. On the accuracy in a combinatorial central limit theorem: the characteristic function method, 67 (1): 150–175. DOI: 10.4213/tvp5412.

Senatov V.V. 2007. On Asymptotic Expansions in the Central Limit Theorem with Explicit Estimates of Remainder Terms Theory of Probability and Its Applications, 51(4): 729–736. DOI: 10.1137/S0040585X9798275X.


Abstract views: 103

Share

Published

2022-09-30

How to Cite

Ganicheva, A. V., & Ganichev, A. V. (2022). Estimating the Number of Terms in the Sum of Independent Random Variables when Modeling Gaussian Random Variables. Economics. Information Technologies, 49(3), 546-557. https://doi.org/10.52575/2687-0932-2022-49-3-546-557

Issue

Section

COMPUTER SIMULATION HISTORY