Analytical and computer implementation models of approximate calculation of probabilistic parameters of short-term life insurance
DOI:
https://doi.org/10.52575/2687-0932-2022-49-1-134-144Keywords:
short-term insurance models, probabilistic parameters, Poisson model, Gauss model, real insurance fee, net premium, Visual Studio, C# programming language, software module, input and outputAbstract
The work is devoted to the practical application of short-term life insurance models. Theorems are given on which approximate methods for calculating the probability characteristics of the summary risk and analytical solutions of key examples based on these mathematical models are based. A comparative analysis of the results of decisions on Poisson and Gauss models was carried out. The application of the more general Gauss model to cases of different groups of insured in insurance companies with different conditions of their life insurance contracts for 1 year is shown. Solution algorithms are also implemented in the computer – a software module has been created to calculate the probabilistic parameters of the total claim: net premium, real payment for insurance, insurance premium, relative insurance premium. Software module codes are compiled in object-oriented language C # using Visual Studio. The module allows you to carry out actuarial calculations of the characteristics of the work of the insurance company with input data, such as the number of contracts, the insurance amount in case of an insured event, the probability of presenting claims, etc. The application of the software module to such probabilistic calculations allows rational use of the operating time of insurance companies and accelerates their adoption of current decisions, especially in cases of implementation of portfolios of various types of short-term insurance.
Downloads
References
Ахтямов А.М. 2005. Теория вероятностей и случайных процессов. Уфа: РИО БашГУ, 304.
Баскаков В.Н., Рябикин В.И., Тихомиров С.Н. 2006. Страхование и актуарные расчеты. М., Экономистъ, 464.
Голубин А.Ю. 2003. Математические модели в теории страхования: построе¬ние и оптимизация. М., Анкил, 160.
Гохман В.С. 2008. Страхование жизни. Теория и практика актуарных расче¬тов. М., Госфиниздат, 140с.
Касимов Ю.Ф. 2005. Введение в актуарную математику (страхование жизни и пенсионных схем). М, Анкил, 176.
Сафина Г.Ф. 2013. Вероятностные задачи актуарной математики. Уфа: РИЦ БашГУ, 137 с.
Сафина Г.Ф., Садрисламова А.Р. 2020. Применение математического пакета к приближенным моделям страхования жизни. Заметки ученого. 9: 78–82.
Фалин Г.И. 1994. Математический анализ рисков в страховании. М., Российский юридический издательский дом «Москва», 130.
Фалин Г.И., Фалин А.И. 2002. Актуарная математика в задачах: учебное пособие по курсу «Математические модели в страховании жизни», 1-е издание. М.: МАКС Пресс, 134.
Фримен А. 2014. ASP.NET 4.5 с примерами на C# 5.0 для профессионалов. М.: Вильямс, 73.
Шахов В.В. 1999. Введение в страхование. М., Финансы и статистика, 288.
Яковлева Т.А., Шевченко О.Ю. 2003. Страхование. М., Юрист, 217.
Abstract views: 152
Share
Published
How to Cite
Issue
Section
Copyright (c) 2022 ECONOMICS. INFORMATION TECHNOLOGIES
This work is licensed under a Creative Commons Attribution 4.0 International License.