Обзор методов машинного обучения в протезировании

Авторы

  • Алексей Владимирович Арсёнов Национальный исследовательский университет «МЭИ»
  • Виктор Денисович Моракс Волгоградский государственный технический университет
  • Анастасия Романовна Донская Волгоградский государственный технический университет; Волгоградский государственный медицинский университет Минздрава России
  • Арсений Сергеевич Ломакин Волгоградский государственный технический университет

DOI:

https://doi.org/10.52575/2687-0932-2025-52-4-897-927

Ключевые слова:

машинное обучение в протезировании, электромиографические сигналы, нейронные сети, управление протезами, обработка ЭМГ-сигналов

Аннотация

Целью исследования является анализ современных методов машинного обучения для обработки электромиографических (ЭМГ) сигналов, применяемых в управлении технологичными протезами. Исследование направлено на сравнение эффективности классических и нейросетевых подходов, оценку их точности и выявление ключевых факторов, влияющих на результаты. В статье проведён обзор существующих исследований, посвящённых обработке ЭМГ-сигналов с использованием машинного обучения. Рассмотрены популярные наборы данных (например, NinaPro), а также различные методы обработки сигналов: классические (LDA, KNN) и современные нейросетевые архитектуры (EMGHandNet, CNN-RNN и др.). Особое внимание уделено сравнительному анализу точности моделей в зависимости от используемых данных, архитектур и параметров методов. Анализ показал, что современные нейросетевые модели (ConTraNet, CNN-RNN) демонстрируют более высокую точность по сравнению с классическими методами (SVM, LDA, RF и др.), однако их эффективность сильно зависит от качества и разнообразия данных. Выявлены ограничения, связанные с недостаточным тестированием на различных наборах данных, что указывает на необходимость стандартизации экспериментов. Также подтверждена важность предварительной обработки сигналов и качества ЭМГ-датчиков для достижения стабильных результатов. Применение методов машинного обучения, особенно нейросетевых архитектур, перспективно для создания более точных и адаптивных протезов. Однако для дальнейшего развития технологии требуется решение проблем универсализации моделей, расширения тестовых данных и улучшения их качества. Дополнительные исследования должны быть направлены на интеграцию систем в реальные условия эксплуатации и повышение интерпретируемости результатов.

Скачивания

Данные скачивания пока недоступны.

Биографии авторов

Алексей Владимирович Арсёнов, Национальный исследовательский университет «МЭИ»

Бакалавр по направлению «Информатика и вычислительная техника», г. Москва, Россия
E-mail: al.arsenov@mail.ru

Виктор Денисович Моракс, Волгоградский государственный технический университет

Студент бакалавриата 2 курса кафедры «Программное обеспечение автоматизированных систем» по направлению «Программная инженерия», г. Волгоград, Россия

Анастасия Романовна Донская, Волгоградский государственный технический университет; Волгоградский государственный медицинский университет Минздрава России

Старший преподаватель кафедры программного обеспечения автоматизированных систем; старший преподаватель кафедры клинической инженерии и технологий искусственного интеллекта, г. Волгоград, Россия

Арсений Сергеевич Ломакин, Волгоградский государственный технический университет

Студент магистратуры 1 курса кафедры «Программное обеспечение автоматизированных систем», г. Волгоград, Россия

Библиографические ссылки

Список литературы

Козырь П.С., Савельев А.И. 2021. Анализ эффективности методов машинного обучения в задаче распознавания жестов на основе данных электромиографических сигналов. Компьютерные исследования и моделирование, 13(1): 175–194. DOI 10.20537/2076-7633-2021-13-1-175-194. – EDN OTBBNJ.

Коробенков Н.О., Кочетов С.С., Григоров П.А. 2019. Бионическое протезирование конечности. Сибирский медицинский журнал, 158(3), 22-27.

Персон Р.С. 1969. Электромиография в исследованиях человека. М.: Наука, 231.

Уразбахтина Ю.О., Камалова К.Р., Морозова Е.С. 2022. Бионические протезы верхних конечностей: сравнительный анализ и перспективы использования. Международный научно-исследовательский журнал, 1-2(115): 125–130.

Ali O., Saif ur R.M., Glasmachers T., Iossifidis I., Klaes C. 2023. ConTraNet: A hybrid network for improving the classification of EEG and EMG signals with limited training data. Computers in Biology and Medicine, 168. 107649. 10.1016/j.compbiomed.2023.107649.

Amma C., Krings T., Bo¨er J., Schultz T. 2015. Advancing Muscle-Computer Interfaces with High-Density Electromyography. In: ACM Conference on Human Factors in Computing Systems. 929–938.

Arteaga M., Castiblanco J., Mondragón I., Colorado Ju., Alvarado-Rojas C. 2020. EMG-driven hand model based on the classification of individual finger movements. Biomedical Signal Processing and Control, 58. 101834. 10.1016/j.bspc.2019.101834.

Ashford J., Bird J.J., Campelo F., Faria D.R. 2019. Classification of EEG signals based on image representation of statistical features. Proc. UK Workshop Comput. Intell. Portsmouth, U.K.: Springer,

Asif A.R., Waris M., Gilani S. Jamil M. Ashraf H., Shafique M. Niazi I. 2020. Performance Evaluation of Convolutional Neural Network for Hand Gesture Recognition Using EMG. Sensors, 20. 10.3390/s20061642.

Atzori M., Gijsberts A., Castellini C., Caputo B., Hager A.G.M., Elsig S., et al. 2014. Electromyography data for noninvasive naturally-controlled robotic hand prostheses. Scientific data, 1.

Bakırcıoğlu K., Ozkurt N. 2020. Classification of Emg Signals Using Convolution Neural Network. International Journal of Applied Mathematics Electronics and Computers, 8. 10.18100/ijamec.795227.

Becerra-Fajardo L., Minguillon Je., Krob M., Rodrigues de C.C., Gonzalez-Sanchez M., Megía-García Á., Galán C., Henares F., Comerma A., del-Ama A., Gil-Agudo A., Grandas F., Schneider-Ickert A., Barroso F., Ivorra A. 2024. First-in-human demonstration of floating EMG sensors and stimulators wirelessly powered and operated by volume conduction. Journal of NeuroEngineering and Rehabilitation, 21. 10.1186/s12984-023-01295-5.

Benalcázar M., Barona L., Valdivieso L., Aguas X., Zea J. 2020. EMG-EPN-612 Dataset; CERN: Geneva, Switzerland.

Bird J., Kobylarz Jh., Faria D, Ekárt A., Ribeiro E. 2020. Cross-domain MLP and CNN Transfer Learning for Biological Signal Processing: EEG and EMG. IEEE Access, 1-1. 10.1109/ACCESS.2020.2979074.

Bird J.J., Faria D.R., Manso L.J., Ekárt A., Buckingham C.D. 2019. A deep evolutionary approach to bioinspired classifier optimisation for brain-machine interaction. Complexity, vol. 2019, 1–14, Mar.

Chen T., Guestrin C. 2016. Xgboost: A scalable tree boosting system. Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. ACM, 785–794.

Chen X., Li Y., Hu R., Zhang X., Chen X. 2021. Hand gesture recognition based on surface electromyography using convolutional neural network with transfer learning method. IEEE J Biomed Health Inform, 25(4): 1292–1304.

Dewald H.A., Lukyanenko P., Lambrecht J.M., Anderson J.R., Tyler D.J., Kirsch R.F., et al. 2019. Stable, three degree-of-freedom myoelectric prosthetic control via chronic bipolar intramuscular electrodes: a case study. J Neuroeng Rehabil, 16(1): 147.

Di Nardo F. 2019. Intra-subject classification of gait phases by neural network interpretation of EMG signals.

Englehart K., Hudgins B. 2003. A robust, real-time control scheme for multifunction myoelectric control. IEEE Transactions on Bio-Medical Engineering, 50(7): 848–854.

Englehart K., Hudgins B., Parker P.A., Stevenson M. 1999. Classification of the myoelectric signal using time-frequency based representations. Med. Eng. Phys., 21: 431–438

Friedman J.H. 2001. Greedy function approximation: a gradient boosting machine. Annals of statistics, 1189–1232.

Geng W., Du Y., Jin W., Wei W., Hu Y., Li J. 2016. Gesture recognition by instantaneous surface EMG images. Scientific Reports, 6: 36571.

Geng Ya., Zhang X., Zhang Y.T., Li P. 2014. A novel channel selection method for multiple motion classification using high-density electromyography. Biomedical engineering online, 13: 102. 10.1186/1475-925X-13-102.

Goldberger A.L., et al. 2000. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation, 101(23): 215–220.

Graupe D., Cline W.K. 1975. Functional separation of EMG signals via ARMA identification methods for prosthesis control purposes. IEEE Trans Syst Man Cybern, SMC-5: 252–259.

He K., Zhang X., Ren S., Sun J. 2016. Deep residual learning for image recognition. Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016, 770–778.

Hu Yu., Wong Yo., Wei W., Du Yu., Kankanhalli M., Geng W. 2018. A novel attention-based hybrid CNN-RNN architecture for sEMG-based gesture recognition. PLOS One, 13. e0206049. 10.1371/journal.pone.0206049.

Hudgins B., Parker P., Scott R.N. 1993. A New Strategy for Multifunction Myoelectric Control. IEEE Trans. Biomed. Eng., 40(1): 82– 94.

Jia G., Lam H.-K., Liao Ju., Wang R. 2020. Classification of Electromyographic Hand Gesture Signals using Machine Learning Techniques. Neurocomputing, 401. 10.1016/j.neucom.2020.03.009.

Karnam N.K., Dubey Sh.R., Turlapaty A., Gokaraju B. 2022. EMGHandNet: A hybrid CNN and Bi-LSTM architecture for hand activity classification using surface EMG signals. Biocybernetics and Biomedical Engineering, 42. 10.1016/j.bbe.2022.02.005.

Khushaba R.N., Kodagoda S., Takruri M., Dissanayake G. 2012. Toward improved control of prosthetic fingers using surface electromyogram (EMG) signals. Expert Syst. Appl., 39(12): 10731–10738, Sep.

Kilic E. 2017. EMG based neural network and admittance control of an active wrist orthosis, J. Mech. Sci. Technol., 31(12): 6093–6106,

Kimoto A., Fujiyama H., Machida M. 2023. A Wireless Multi-Layered EMG/MMG/NIRS Sensor for Muscular Activity Evaluation. Sensors, 23. 1539. 10.3390/s23031539.

Kuiken T.A., Li G., Lock B.A. et al. 2009. Targeted muscle reinnervation for real-time myoelectric control of multifunction artificial arms. JAMA, 2009 Feb 11. 301(6): 619–628.

Lawhern V.J., Solon A.J., Waytowich N.R., Gordon S.M., Hung C.P., Lance B.J. 2018. EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces, J. Neural. Eng, (Oct. 2018), 15(5). 056013.

Lee K.H., Min Ji., Byun S. 2021. Electromyogram-Based Classification of Hand and Finger Gestures Using Artificial Neural Networks. Sensors, 22: 225. 10.3390/s22010225.

Lerner Z.F., Board W.J., Browning R.C. 2014. Effects of obesity on lower extremity muscle function during walking at two speeds. Gait Posture, 39(3): 978–984.

Lobov S., Krilova N., Kastalskiy I., Kazantsev V., Makarov V.A. 2018. Latent factors limiting the performance of sEMG-interfaces. Sensors, 18(4): 1122.

Motoche C., Benalcázar M.E. 2018. Real-time hand gesture recognition based on electromyographic signals and artificial neural networks. In Proceedings of the International Conference on Artificial Neural Networks, Rhodes, Greece, 4–7 October 2018; 352–361.

Nazarpour K., Sharafat A.R., Firoozabadi S.M.P. 2007. Application of higher order statistics to surface electromyogram signal classification. IEEE Trans. Biomed. Eng., 54:1762–1769.

Ng C.L., Reaz M.B.I., Crespo M., Cicuttin A., Shapiai M., Ali S. 2024. A Versatile and Wireless Multichannel Capacitive EMG Measurement System for Digital Healthcare. IEEE Internet of Things Journal, 1-1. 10.1109/JIOT.2024.3370960.

Ng Ch.L., Reaz M.B.I., Crespo M., Cicuttin A., Shapiai M., Ali S., Kamal N. 2023. A Flexible Capacitive Electromyography Biomedical Sensor for Wearable Healthcare Applications. IEEE Transactions on Instrumentation and Measurement, 1-1. 10.1109/TIM.2023.3281563.

Olsson A.E., Bjorkman A., Antfolk C. 2020. Automatic discovery of resource-restricted convolutional neural network topologies for myoelectric pattern recognition. Comput. Biol. Med., 120: 103723.

Ortiz-Catalan M., Branemark R., Hakansson B. 2013. BioPatRec: A modular research platform for the control of artificial limbs based on pattern recognition algorithms. Source Code Biol. Med., 8(1): 11.

Ozdemir M.A. 2021. Dataset for multi-channel surface electromyography (sEMG) signals of hand gestures, Mendeley, 15.

Ozdemir M.A., Kisa D.H., Guren O., Akan A. 2022. Dataset for multi-channel surface electromyography (sEMG) signals of hand gestures, Data Brief, 41. 107921.

Pizzolato S., Tagliapietra L., Cognolato M., Reggiani M., Muller H., Atzori M. 2017. Comparison of six electromyography acquisition setups on hand movement classification tasks. PLOS One, 10; 12(10): 1–17.

Resnik L. 2011. Development and testing of new upper-limb prosthetic devices: research designs for usability testing. J. Rehabil. Res. Dev, 48(6): 697–706.

Ryser F., Butzer T., Held J.P., Lambercy O., Gassert R. 2017. Fully embedded myoelectric control for a wearable robotic hand orthosis. IEEE Int. Conf. Rehabil. Robot. 2017 Jul. 615–621. doi: 10.1109/ICORR.2017.8009316. PMID: 28813888.

Sapsanis C., Georgoulas G., Tzes A., Lymberopoulos D. 2013. Improving EMG based classification of basic hand movements using EMD.

Schirrmeister R.T., et al. 2017. Deep learning with convolutional neural networks for EEG decoding and visualization: convolutional Neural Networks in EEG Analysis, Hum. Brain Mapp, 38(11): 5391–5420.

Song W., Wang A., Chen Ya., Bai Sh., Lin Zh., Yan N., Luo D., Liao Yi., Zhang M., Wang Zh., Xie X. 2019. Design of a Wearable Smart sEMG Recorder Integrated Gradient Boosting Decision Tree based Hand Gesture Recognition. IEEE transactions on biomedical circuits and systems, 10.1109/TBCAS.2019.2953998.

Triwiyanto T., Wahyunggoro O., Nugroho H.A., Herianto H. 2017. An investigation into time domain features of surface electromyography to estimate the elbow joint angle. Adv. Electr. Electron. Eng., 15(3): 448–458,

Triwiyanto T., Pawana I., Purnomo M. 2020. An Improved Performance of Deep Learning Based on Convolution Neural Network to Classify the Hand Motion by Evaluating Hyper Parameter. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 1-1. 10.1109/TNSRE.2020.2999505.

Valdivieso L., Vásconez H.Ju., Barona L., Benalcázar M. 2023. Recognition of Hand Gestures Based on EMG Signals with Deep and Double-Deep Q-Networks. Sensors, 23. 10.3390/s23083905.

Vásconez J.P., Barona L.L.I., Valdivieso C.A.L., Benalcázar M.E. 2022. Hand Gesture Recognition Using EMG-IMU Signals and Deep Q-Networks. Sensors, 22, 9613.

Wei W., Wong Y., Du Y., Hu Y., Kankanhalli M., Geng W. 2019. A multi-stream convolutional neural network for sEMG-based gesture recognition in musclecomputer interface. Pattern Recognit. Lett., 119: 131–138.

Young A.J., Hargrove L.J., Kuiken T.A. 2011. The effects of electrode size and orientation on the sensitivity of myoelectric pattern recognition systems to electrode shift. IEEE Trans. Biomed. Eng., 58(9): 2537–2544

Zhang Ch., Shih Ya.-H., Qian Ji. 2019. Real-Time Surface EMG Pattern Recognition for Hand Gestures Based on an Artificial Neural Network. Sensors, 19. 3170. 10.3390/s19143170.

References

Kozyr P.S., Saveliev A.I. 2021. Analysis of the effectiveness of machine learning methods in the problem of gesture recognition based on the data of electromyographic signals. Computer research and modeling, 13(1): 175–194 (in Russian). DOI 10.20537/2076-7633-2021-13-1-175-194. EDN OTBBNJ.

Korobenkov N.O., Kochetov S.S., Grigorov P.A. 2019. Bionic limb prosthetics. Siberian Medical Journal, 158(3), 22-27 (in Russian).

Person R.S. 1969. Ehlektromiografiya v issledovaniyakh cheloveka [Electromyography in human research]. M.: Nauka, 231 (in Russian).

Urazbakhtina Yu.O., Kamalova K.R., Morozova E.S. 2022. Bionic upper limb prostheses: comparative analysis and prospects of use. International research journal, 1-2(115): 125–130 (in Russian).

Ali O., Saif ur R.M., Glasmachers T., Iossifidis I., Klaes C. 2023. ConTraNet: A hybrid network for improving the classification of EEG and EMG signals with limited training data. Computers in Biology and Medicine, 168. 107649. 10.1016/j.compbiomed.2023.107649.

Amma C., Krings T., Bo¨er J., Schultz T. 2015. Advancing Muscle-Computer Interfaces with High-Density Electromyography. In: ACM Conference on Human Factors in Computing Systems. 929–938.

Arteaga M., Castiblanco J., Mondragón I., Colorado Ju., Alvarado-Rojas C. 2020. EMG-driven hand model based on the classification of individual finger movements. Biomedical Signal Processing and Control, 58. 101834. 10.1016/j.bspc.2019.101834.

Ashford J., Bird J.J., Campelo F., Faria D.R. 2019. Classification of EEG signals based on image representation of statistical features. Proc. UK Workshop Comput. Intell. Portsmouth, U.K.: Springer,

Asif A.R., Waris M., Gilani S. Jamil M. Ashraf H., Shafique M. Niazi I. 2020. Performance Evaluation of Convolutional Neural Network for Hand Gesture Recognition Using EMG. Sensors, 20. 10.3390/s20061642.

Atzori M., Gijsberts A., Castellini C., Caputo B., Hager A.G.M., Elsig S., et al. 2014. Electromyography data for noninvasive naturally-controlled robotic hand prostheses. Scientific data, 1.

Bakırcıoğlu K., Ozkurt N. 2020. Classification of Emg Signals Using Convolution Neural Network. International Journal of Applied Mathematics Electronics and Computers, 8. 10.18100/ijamec.795227.

Becerra-Fajardo L., Minguillon Je., Krob M., Rodrigues de C.C., Gonzalez-Sanchez M., Megía-García Á., Galán C., Henares F., Comerma A., del-Ama A., Gil-Agudo A., Grandas F., Schneider-Ickert A., Barroso F., Ivorra A. 2024. First-in-human demonstration of floating EMG sensors and stimulators wirelessly powered and operated by volume conduction. Journal of NeuroEngineering and Rehabilitation, 21. 10.1186/s12984-023-01295-5.

Benalcázar M., Barona L., Valdivieso L., Aguas X., Zea J. 2020. EMG-EPN-612 Dataset; CERN: Geneva, Switzerland.

Bird J., Kobylarz Jh., Faria D, Ekárt A., Ribeiro E. 2020. Cross-domain MLP and CNN Transfer Learning for Biological Signal Processing: EEG and EMG. IEEE Access, 1-1. 10.1109/ACCESS.2020.2979074.

Bird J.J., Faria D.R., Manso L.J., Ekárt A., Buckingham C.D. 2019. A deep evolutionary approach to bioinspired classifier optimisation for brain-machine interaction. Complexity, vol. 2019, 1–14, Mar.

Chen T., Guestrin C. 2016. Xgboost: A scalable tree boosting system. Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. ACM, 785–794.

Chen X., Li Y., Hu R., Zhang X., Chen X. 2021. Hand gesture recognition based on surface electromyography using convolutional neural network with transfer learning method. IEEE J Biomed Health Inform, 25(4): 1292–1304.

Dewald H.A., Lukyanenko P., Lambrecht J.M., Anderson J.R., Tyler D.J., Kirsch R.F., et al. 2019. Stable, three degree-of-freedom myoelectric prosthetic control via chronic bipolar intramuscular electrodes: a case study. J Neuroeng Rehabil, 16(1): 147.

Di Nardo F. 2019. Intra-subject classification of gait phases by neural network interpretation of EMG signals.

Englehart K., Hudgins B. 2003. A robust, real-time control scheme for multifunction myoelectric control. IEEE Transactions on Bio-Medical Engineering. 50(7): 848–854.

Englehart K., Hudgins B., Parker P.A., Stevenson M. 1999. Classification of the myoelectric signal using time-frequency based representations. Med. Eng. Phys., 21: 431–438

Friedman J.H. 2001. Greedy function approximation: a gradient boosting machine. Annals of statistics, 1189–1232.

Geng W., Du Y., Jin W., Wei W., Hu Y., Li J. 2016. Gesture recognition by instantaneous surface EMG images. Scientific Reports, 6: 36571.

Geng Ya., Zhang X., Zhang Y.T., Li P. 2014. A novel channel selection method for multiple motion classification using high-density electromyography. Biomedical engineering online, 13: 102. 10.1186/1475-925X-13-102.

Goldberger A.L., et al. 2000. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation, 101(23): 215–220.

Graupe D., Cline W.K. 1975. Functional separation of EMG signals via ARMA identification methods for prosthesis control purposes. IEEE Trans Syst Man Cybern, SMC-5: 252–259.

He K., Zhang X., Ren S., Sun J. 2016. Deep residual learning for image recognition. Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016, 770–778.

Hu Yu., Wong Yo., Wei W., Du Yu., Kankanhalli M., Geng W. 2018. A novel attention-based hybrid CNN-RNN architecture for sEMG-based gesture recognition. PLOS One, 13. e0206049. 10.1371/journal.pone.0206049.

Hudgins B., Parker P., Scott R.N. 1993.A New Strategy for Multifunction Myoelectric Control. IEEE Trans. Biomed. Eng., 40(1): 82– 94.

Jia G., Lam H.-K., Liao Ju., Wang R. 2020. Classification of Electromyographic Hand Gesture Signals using Machine Learning Techniques. Neurocomputing, 401. 10.1016/j.neucom.2020.03.009.

Karnam N.K., Dubey Sh.R., Turlapaty A., Gokaraju B. 2022. EMGHandNet: A hybrid CNN and Bi-LSTM architecture for hand activity classification using surface EMG signals. Biocybernetics and Biomedical Engineering, 42. 10.1016/j.bbe.2022.02.005.

Khushaba R.N., Kodagoda S., Takruri M., Dissanayake G. 2012. Toward improved control of prosthetic fingers using surface electromyogram (EMG) signals. Expert Syst. Appl., 39(12): 10731–10738, Sep.

Kilic E. 2017. EMG based neural network and admittance control of an active wrist orthosis, J. Mech. Sci. Technol., 31(12): 6093–6106,

Kimoto A., Fujiyama H., Machida M. 2023. A Wireless Multi-Layered EMG/MMG/NIRS Sensor for Muscular Activity Evaluation. Sensors, 23. 1539. 10.3390/s23031539.

Kuiken T.A., Li G., Lock B.A. et al. 2009. Targeted muscle reinnervation for real-time myoelectric control of multifunction artificial arms. JAMA. 2009 Feb 11. 301(6): 619–628.

Lawhern V.J., Solon A.J., Waytowich N.R., Gordon S.M., Hung C.P., Lance B.J. 2018. EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces, J. Neural. Eng, (Oct. 2018), 15(5). 056013.

Lee K.H., Min Ji., Byun S. 2021. Electromyogram-Based Classification of Hand and Finger Gestures Using Artificial Neural Networks. Sensors, 22: 225. 10.3390/s22010225.

Lerner Z.F., Board W.J., Browning R.C. 2014. Effects of obesity on lower extremity muscle function during walking at two speeds. Gait Posture, 39(3): 978–984.

Lobov S., Krilova N., Kastalskiy I., Kazantsev V., Makarov V.A. 2018. Latent factors limiting the performance of sEMG-interfaces. Sensors, 18(4): 1122.

Motoche C., Benalcázar M.E. 2018. Real-time hand gesture recognition based on electromyographic signals and artificial neural networks. In Proceedings of the International Conference on Artificial Neural Networks, Rhodes, Greece, 4–7 October 2018; 352–361.

Nazarpour K., Sharafat A.R., Firoozabadi S.M.P. 2007. Application of higher order statistics to surface electromyogram signal classification. IEEE Trans. Biomed. Eng., 54:1762–1769.

Ng C.L., Reaz M.B.I., Crespo M., Cicuttin A., Shapiai M., Ali S. 2024. A Versatile and Wireless Multichannel Capacitive EMG Measurement System for Digital Healthcare. IEEE Internet of Things Journal, 1-1. 10.1109/JIOT.2024.3370960.

Ng Ch.L., Reaz M.B.I., Crespo M., Cicuttin A., Shapiai M., Ali S., Kamal N. 2023. A Flexible Capacitive Electromyography Biomedical Sensor for Wearable Healthcare Applications. IEEE Transactions on Instrumentation and Measurement, 1-1. 10.1109/TIM.2023.3281563.

Olsson A.E., Bjorkman A., Antfolk C. 2020. Automatic discovery of resource-restricted convolutional neural network topologies for myoelectric pattern recognition. Comput. Biol. Med., 120: 103723.

Ortiz-Catalan M., Branemark R., Hakansson B. 2013. BioPatRec: A modular research platform for the control of artificial limbs based on pattern recognition algorithms. Source Code Biol. Med., 8(1): 11.

Ozdemir M.A. 2021. Dataset for multi-channel surface electromyography (sEMG) signals of hand gestures, Mendeley, 15.

Ozdemir M.A., Kisa D.H., Guren O., Akan A. 2022. Dataset for multi-channel surface electromyography (sEMG) signals of hand gestures, Data Brief, 41. 107921.

Pizzolato S., Tagliapietra L., Cognolato M., Reggiani M., Muller H., Atzori M. 2017. Comparison of six electromyography acquisition setups on hand movement classification tasks. PLOS One, 10; 12(10): 1–17.

Resnik L. 2011. Development and testing of new upper-limb prosthetic devices: research designs for usability testing. J. Rehabil. Res. Dev, 48(6): 697–706.

Ryser F., Butzer T., Held J.P., Lambercy O., Gassert R. 2017. Fully embedded myoelectric control for a wearable robotic hand orthosis. IEEE Int. Conf. Rehabil. Robot. 2017 Jul. 615–621. doi: 10.1109/ICORR.2017.8009316. PMID: 28813888.

Sapsanis C., Georgoulas G., Tzes A., Lymberopoulos D. 2013. Improving EMG based classification of basic hand movements using EMD.

Schirrmeister R.T., et al. 2017. Deep learning with convolutional neural networks for EEG decoding and visualization: convolutional Neural Networks in EEG Analysis, Hum. Brain Mapp., 38(11): 5391–5420.

Song W., Wang A., Chen Ya., Bai Sh., Lin Zh., Yan N., Luo D., Liao Yi., Zhang M., Wang Zh., Xie X. 2019. Design of a Wearable Smart sEMG Recorder Integrated Gradient Boosting Decision Tree based Hand Gesture Recognition. IEEE transactions on biomedical circuits and systems, 10.1109/TBCAS.2019.2953998.

Triwiyanto T., Wahyunggoro O., Nugroho H.A., Herianto H. 2017. An investigation into time domain features of surface electromyography to estimate the elbow joint angle. Adv. Electr. Electron. Eng., 15(3): 448–458,

Triwiyanto T., Pawana I., Purnomo M. 2020. An Improved Performance of Deep Learning Based on Convolution Neural Network to Classify the Hand Motion by Evaluating Hyper Parameter. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 1-1. 10.1109/TNSRE.2020.2999505.

Valdivieso L., Vásconez H.Ju., Barona L., Benalcázar M. 2023. Recognition of Hand Gestures Based on EMG Signals with Deep and Double-Deep Q-Networks. Sensors, 23. 10.3390/s23083905.

Vásconez J.P., Barona L.L.I., Valdivieso C.A.L., Benalcázar M.E. 2022. Hand Gesture Recognition Using EMG-IMU Signals and Deep Q-Networks. Sensors, 22, 9613.

Wei W., Wong Y., Du Y., Hu Y., Kankanhalli M., Geng W. 2019. A multi-stream convolutional neural network for sEMG-based gesture recognition in musclecomputer interface. Pattern Recognit. Lett., 119: 131–138.

Young A.J., Hargrove L.J., Kuiken T.A. 2011. The effects of electrode size and orientation on the sensitivity of myoelectric pattern recognition systems to electrode shift. IEEE Trans. Biomed. Eng., 58(9): 2537–2544

Zhang Ch., Shih Ya.-H., Qian Ji. 2019. Real-Time Surface EMG Pattern Recognition for Hand Gestures Based on an Artificial Neural Network. Sensors, 19. 3170. 10.3390/s19143170.


Просмотров аннотации: 2

Поделиться

Опубликован

2025-12-30

Как цитировать

Арсёнов, А. В., Моракс, В. Д., Донская, А. Р., & Ломакин, А. С. (2025). Обзор методов машинного обучения в протезировании . Экономика. Информатика, 52(4), 897-927. https://doi.org/10.52575/2687-0932-2025-52-4-897-927

Выпуск

Раздел

КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ

Наиболее читаемые статьи этого автора (авторов)