Modeling scenarios of dynamics of indicators of development of IT-industry by means of elementary mathematical functions
DOI:
https://doi.org/10.18413/2687-0932-2020-47-4-729-746Keywords:
econometrics, forecasting, trend, elementary mathematical functions, socio-economic development, time series, regional statistics, economic indicatorsAbstract
Forecasting is an important tool in the activities of scientists and researchers of the socio-economic sphere. Its use allows us to suggest future options and find timely, adequate and effective answers to them. Prediction of regional development indicators, in turn, allows you to formulate the necessary national policies for business entities that need government support, or the redistribution of resources from elements of the economic system, which in turn are in excess. The purpose of this article is the development and testing of appropriate tools that simulates forecast scenarios for the development of dynamics indicators, which are the socio-economic characteristics of the region. As a basis for forecasting, we used trend models expressed by elementary mathematical functions. In addition, an algorithm for modeling scenarios and a corridor of values of the predicted value is presented. Testing of the developed tool was done on the statistical indicators of the Russian Federation and Perm Territory, characterizing the development and level of influence of IT technologies in the study area.
Downloads
References
Айвазян С.А. 2010. Методы эконометрики. М., Магистр: ИНФРА-М, 512.
Алферьев Д.А. 2015. Прогноз развития инновационной активности в России. Проблемы развития территории, 6 (80): 201–213.
Алферьев Д.А. 2018. Теоретико-методические аспекты долгосрочного прогнозирования научно-технологического развития. Управление инвестициями и инновациями, 1: 5–16. https://www.elibrary.ru/item.asp?id=32582523 (дата обращения: апрель 2020).
Груздев А. 2016. Прогнозное моделирование в IBM SPSS Statistics и R. Метод деревьев решений. М., ДМК Пресс, 278.
Жерон О. 2018. Прикладное машинное обучение с помощью Scikit-Learn и TensorFlow: концепции, инструменты и техники для создания интеллектуальных систем. СпБ., ООО «Альфа-книга», 688.
Кремин А.Е. 2019. Проблемы использования ИТ-аутсорсинга для экономки России. Научный вестник южного института менеджмента, 3 (27): 5–13. https://doi.org/10.31775/2305-3100-2019-3-5-13
Малинецкий Г.Г. Курдюмов С.П. 2001. Нелинейная динамика и проблемы прогноза. Вестник РАН, 3: 210–232.
Сердюкова О.А. 2019. Цифровая экономика Пермского края: состояние и перспективы развития. Экономика и бизнес: теория и практика, 8: 138–144. https://doi.org/10.24411/2411-0450-2019-11130
Сигель Э. 2017. Просчитать будущее. Кто кликнет, купит, соврет или умрет. М., Альпина Паблишер, 374.
Ушакова Ю.О., Усков В.С. 2019. Проблемы подготовки научно-технических кадров (на примере Вологодской области). Вестник Кемеровского государственного университета. Серия: Политические, социологические и экономические науки, 4 (3): 346–353. https://doi.org/10.21603/2500-3372-2019-4-3-346-353
Юдин Г. 2016. Репрезентативность в опросах. ПостНаука. https://postnauka.ru/ faq/58454 (дата обращения: апрель 2020).
Якушев Н.О. 2017. Особенности составляющей товарной структуры экспорта регионов. Дети и молодежь – будущее России: материалы IV Международной науч.-практ. конф., г. Вологда, 5–7 октября 2016 г.: в 2 частях. Вологда, ИСЭРТ РАН, Ч. I: 286–291.
Banko M., Brill E. 2001. Scaling to Very Very Large Corpora for Natural LanguagevDisambiguation // Proceedings of the 39th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics: 26–33. https://doi.org/10.3115/ 1073012.1073017
Maddox T. TechRepublic. Top tech trends for 2021: Gartner predicts hyperautomation, AI and more will dominate business technology. 2020, https://www.techrepublic.com/article/top-tech-trends-for-2021-gartner-predicts-hyperautomation-ai-and-more-will-dominate-business-technology/ (дата обращения: ноябрь 2020).
Muller J.-M. 2016. Elementary Functions. Publisher: Birkhäuser Basel, 283. https://doi.org/10.1007/978-1-4899-7983-4
Nielsen R.W. 2015. Mathematics of Predicting Growth. https://www.researchgate.net/publication/283153443_Mathematics_of_Predicting_Growth (дата обращения: апрель 2020).
Norvig P., Halevy A., Pereira F. The Unreasonable Effectiveness of Data. https://static.googleusercontent.com/media/research.google.com/ru//pubs/archive/35179.pdf (дата обращения: апрель 2020).
Rahman M.H., Salma U., Hossain M.M. et al. 2016. Revenue Forecasting using Holt–Winters Exponential Smoothing. Research & Reviews: Journal of Statistics, 5 (3). https://www.researchgate.net/publication/311945797_Revenue_Forecasting_using_Holt-Winters_Exponential_Smoothing (дата обращения: апрель 2020).
Shankar lyer L., R S. 2017. Demand management and forecasting of seasonal products in a FMEG Company. Conference: National Conference on Operations Management, Analytics and Statistical Methods, https://www.researchgate.net/publication/315186477_Demand_management_and_forecasting_of_seasonal_products_in_a_FMEG_Company (дата обращения: апрель 2020).
Shuvaev A., Butova O., Lebedev V. et al. 2019. Modeling and forecasting socio-economic processes in the region. Indo American Journal of Pharmaceutical Sciences (IAJPS), 6. (4): 7082–7086. http://www.iajps.com/April-2019/issue_19april_16.php (дата обращения: апрель 2020).
Stryabkova E.A., Glotova A.S., Titova I.N. et al. 2018. Modeling and forecasting of socio-economic development of the region. The Journal of Social Sciences Research, 5: 404–410. https://doi.org/10.32861/jssr.spi5.404.410
Abstract views: 424
Share
Published
How to Cite
Issue
Section
Copyright (c) 2020 ECONOMICS. INFORMATION TECHNOLOGIES
This work is licensed under a Creative Commons Attribution 4.0 International License.