Processing of technical and economic information in the system of geotechnical monitoring

This paper is an output of the science project executed with the support of a grant of the President of the Russian Federation No. MD-1800.2020.8.

Authors

  • Nikolay V. Dorofeev Vladimir State University
  • Ekaterina S. Pankina Vladimir State University
  • Anastasia V. Grecheneva Vladimir State University
  • Roman V. Romanov Vladimir State University

DOI:

https://doi.org/10.18413/2687-0932-2020-43-3-638-647

Keywords:

geotechnical system, monitoring systems, technical and economic analysis, optimization, bifurcation parameters

Abstract

This article proposes a method for processing the parameters of a geotechnical system, designed to increase the efficiency of the functioning of geotechnical monitoring systems under conditions of the risk of violation of geodynamic stability and technical and economic limitations when organizing monitoring works. The proposed method allows you to select the technical parameters of the monitoring system and select monitoring points in the geotechnical system based on economic indicators. The selection criterion is the criterion of minimizing the cost of introducing a geotechnical monitoring system with respect to possible damage, which is expressed in monetary terms, in case of a violation of the stability of the geotechnical system or its analyzed area. The costs of implementing a geotechnical monitoring system are determined based on its cost, fixed costs
of its maintenance, as well as technical parameters. Among the technical parameters that determine the costs of implementing a geotechnical monitoring system, there are costs in the event of missing destructive geotechnical processes, false alarms of the system, costs of registering one parameter of a geotechnical system at one point using a specific method. To reduce the number of monitored parameters and measurement points, it is proposed to carry out measurements at key control points, and the choice of monitored parameters is based on the bifurcation approach. Practical verification of the developed method for processing the parameters of the geotechnical system was carried out when suffusion processes were detected in urban development in the city of Murom, Vladimir region, Russian Federation. The proposed method made it possible to significantly
reduce the costs of monitoring work while maintaining the accuracy of the monitoring system.

Downloads

Download data is not yet available.

Author Biographies

Nikolay V. Dorofeev, Vladimir State University

Doctor of Technical Sciences Docent, Head of the Department of Management and Control in Technical Systems Vladimir State University,

Vladimir, Russia

Ekaterina S. Pankina, Vladimir State University

Researcher, Department of Management and Control in Technical Systems Vladimir State University,

Vladimir, Russia

Anastasia V. Grecheneva, Vladimir State University

Candidate of Technical Sciences, Docent of the Department of Management
and Control in Technical Systems Vladimir State University,

Vladimir, Russia

Roman V. Romanov, Vladimir State University

Candidate of Technical Sciences, Docent, Docent of the Department of Management and Control in Technical Systems Vladimir State University,

Vladimir, Russia

References

ГОСТ Р 53778-2010. Здания и сооружения. Правила обследования и мониторинга технического состояния. Дата введения 25.03.2010.

Иноземцев В.К., Иноземцева О.В., Стрельникова К.А. 2010. Расчет бифуркационной устойчивости системы «Сооружение-слой основания» с учетом физической нелинейности основания. Строительство и реконструкция, 1 (27): 16–22.

Иноземцев В.К., Редков В.И. 2017. Геотехнические риски строительства и эксплуатации зданий на территориях с оползневыми процессами. Вестник Поволжского отделения Руси. Академия архитектуры и строительных наук, 20: 170–179.

Квартальнов С.В., Макулов В.В. 2017. Геотехнический мониторинг зданий и сооружений. European science, 5 (27): 43–45.

Леонов О.А., Шкаруба Н.Я. 2012. Алгоритм выбора средств измерений для контроля качества по технико-экономическим критериям. Вестник Федерального государственного образовательного учреждения высшего профессионального образования Московский государственный агроинженерный университет им. В.П. Горячкина, 2 (53): 89–91.

Мальцев А.В., Астафьева Н.С., Булавкина Ю.В. 2014. Значение геомониторинга при новом строительстве и реконструкции. Землеустройство и кадастры, 3 (4): 213–218.

Назаров Д.И. 2015. Разрушение конструкций горнотехнического здания, энергетический и бифуркационный анализ. Горный информационно-аналитический бюллетень, 7: 95–100.

Осокин А.И., Татаринов С.В., Денисова О.О., Макарова Е.В. 2014. Система геотехнического мониторинга как средство обеспечения безопасности строительства. Жилищное строительство, 9: 10–18.

Сосунов И.В. 2010. Актуальные вопросы предупреждения чрезвычайных ситуаций, Научно-методическое издание, МЧС России, ФГУ, Рез. Институт гражданской обороны и чрезвычайных ситуаций, 352.

Теличенко В.И., Гутенев В.В., Слесарев М.Ю. 2006. Подходы к интерпретации систем управления экологической безопасностью в строительстве. Экология урбанизированных территорий, 2: 6–11.

Улицкий В.М., Шашкин А.Г. 1999. Геотехническое сопровождение реконструкции городов: (Обследование, расчеты, ведение работ, мониторинг) . М.: Изд-во АСВ, 324.

Bondarik G.K. 2012. Geokibernetika – A tool for diagnosing and predicting the state of natural and natural-technical systems, Geoecol., Eng. geology, Hydrogeol., geocryology, 4: 364–370.

Dorofeev N., Kuzichkin O., Eremenko V. 2016. The method of selection of key objects and the construction of forecast function of the destructive geodynamic processes. Informatics, geoinformatics and remote sensing conference proceedings, sgem 2016. Albena, Bulgaria, 1: 883–890.

Grecheneva A.V., Kuzichkin O.R., Mikhaleva E.S., Dorofeev N.V. 2018. Geotechnical monitoring of the buildings on the basis of analysis of transfer functions and cyclic vibrational technogenic loads, Jour of Adv Research in Dynamical and Control Systems, Vol. 10, Iss. 02: 1995–2003.

Kostarev S. N., Sereda T. G., Mikhailova M.A. 2013. Development of an automated monitoring and management system for natural-technical waste disposal systems, Fund. Res., 6(2): 273–277.

Kuzichkin O.R., Grecheneva A.V., Dorofeev N.V., Mishunin V.V. 2018b. Geotechnical monitoring of the objects based on the method of inclinometric control of own frequencies, Journal of Advanced Research in Dynamical and Control Systems, Vol. 10. Iss. 13: 616–619.

Kuzichkin O.R., Grecheneva A.V., Gakhov R.P., Dorofeev N.V., Baknin M.D., Gakhov B.R. 2018a. Development and research of the geoelectric model of the local zone of geodynamic control, Journal of Advanced Research in Dynamical and Control Systems, Vol. 10. Iss. 13: 620–62.

Petrochenko V. I., Petrochenko A. V. 2019. Optimization of design solutions for flood protection in river basins, Reclamation, 2 (88): 26–33.

Sledge I. J., Keller J. M. 2008. Growing neural gas for temporal clustering. 19th Int. conf. On Pattern Reconition. Tampa, Florida, USA, 1–8.

Vasilyev G.S., Kuzichkin O.R., Romanov R.V., Dorofeev N.V., Grecheneva A.V. 2018. The practice of using a multi-pole electrical installation for monitoring the coastal zone of karst lakes. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM. 2018 Albena, Bulgaria, Vol. 18. Iss. 1.2: 727–734.


Abstract views: 514

Share

Published

2020-11-02

How to Cite

Dorofeev, N. V., Pankina, E. S., Grecheneva, A. V., & Romanov, R. V. (2020). Processing of technical and economic information in the system of geotechnical monitoring: This paper is an output of the science project executed with the support of a grant of the President of the Russian Federation No. MD-1800.2020.8. Economics. Information Technologies, 47(3), 638-647. https://doi.org/10.18413/2687-0932-2020-43-3-638-647

Issue

Section

SYSTEM ANALYSIS AND PROCESSING OF KNOWLEDGE

Most read articles by the same author(s)