Effect of the Transmitter Power on the Data Transmission Distance over the LoRa Wireless Connection
DOI:
https://doi.org/10.52575/2687-0932-2025-52-4-956-966Keywords:
radio communication, experiment, radio control, analysis, control system, LoRa, approximation, errorAbstract
The work experimentally investigates the effect of transmitter power on the communication range in LoRa wireless networks, which is critically important for the energy-efficient design of IoT systems. The experiments were conducted on a hardware stand with the SX1278 module and the STM32F103C8T6 microcontroller. To analyze the resulting dependence, various regression models were tested: linear, quadratic, cubic, power-law, exponential, and hyperbolic. A comparison according to the RMSE and R2 criteria showed that the smallest error is provided by a power approximation that most accurately reflects the physics of radio signal attenuation. Exponential and hyperbolic models proved to be the least adequate. The practical value of the results lies in the possibility of optimizing the power of the transmitter to increase the battery life of the devices and reliable coverage in difficult terrain conditions, such as mountainous or underground facilities.
Downloads
References
Список литературы
Малышева Т.А. 2016. Численные методы и компьютерное моделирование. Лабораторный практикум по аппроксимации функций. Учебно-методическое пособие. СПб.: Университет ИТМО, 33.
Межетов М.А., Тихова А.И., Вахрушева У.С., Федоров А.В. 2021. Применение технологии LoRa в беспилотных авиационных системах. Актуальные проблемы и перспективы развития гражданской авиации: сборник трудов X Международной научно-практической конференции, Иркутск, 14–15 октября 2021 года. Том 2. Иркутск: Иркутский филиал ФГБОУ ВО «Московский государственный технический университет гражданской авиации». 180-185. EDN UZUCLT.
Наумов М.А., Карповский А.Ю. 2024. Разработка и исследование стенда для проверки беспроводной радиосвязи LoRa. Материалы XIX Всероссийской научно-практической конференции с международным участием Инженеры настоящего и будущего: практика и перспективы развития партнерства в высшем техническом образовании. Таганрог. Т. 2. 330–336.
Наумов М.А., Карповский А.Ю., Казаков В.В. 2024. Разработка системы управления машина и механизмами с применением беспроводной технологии связи LoRa. Сборник научных трудов XXIV Международной научно-технической конференции Автоматизация Технологических процессов. Поиск молодых. Донецк. 123–126.
Обзор технологии LoRa. URL: https://itechinfo.ru/node/46 (дата обращения: 01.11.2024).
Пономарев А.Б., Пикулева Э.А. 2014. Методология научных исследований: учеб. пособие. Пермь: Изд-во Перм. нац. исслед. политехн. ун-та, 186.
Шестакович В.П. 2012. Основы численных методов: учеб.-метод. пособие. Минск: БГУИР, 68.
Attia T., Heusse M., Tourancheau B., Duda A. 2019. Experimental Characterization of LoRaWAN Link Quality. IEEE Global Communications Conference (GLOBECOM), Dec 2019, Waikoloa, United States. ffhal-02316402. URL: [https://hal.science/hal-02316402/document].
Baruffa G. et al. 2020. Error probability performance of chirp modulation in uncoded and coded LoRa systems. Digital Signal Processing, 106: 102828.
IoT Communication Protocols–Network Protocols Ignacio de Mendizábal. URL: https://www.allaboutcircuits.com/technical-articles/internet-of-communication-communication-protocols-network-protocols/ (дата обращения: 01.11.2024).
Liando J.C. et al. 2019. Known and unknown facts of LoRa: Experiences from a large-scale measurement study. ACM Transactions on Sensor Networks (TOSN), 15(2): 1–35.
Naumov M.A., Karpovsky A.Yu. 2024. Development of a control system for machines and mechanisms using lora wireless communication technology. Сборник материалов научно-практической конференции для преподавателей гуманитарных дисциплин Young scientists’ researches and achievements in science. Донецк. 281–289.
Performance line, ARM-based 32-bit MCU with Flash, USB, CAN, seven 16-bit timers, two ADCs and nine communication interfaces. URL: http://inverter48.ru/datasheet/mcu/STM32F103C8T6.pdf?ysclid=m2swy5p2eh408905702
Robyns P. et al. 2018. A Multi-Channel Software Decoder for the LoRa Modulation Scheme. IoTBDS. 41–51.
Sornin N., Luis M., Eirich T., Kramp T., Hersent O. 2015. LoRaWAN Specification V1.0. URL: https://lora-alliance.org/wp-content/uploads/2020/11/2015_–_lorawan_specification_1r0_611_1.pdf.
SX1276/77/78/79 – 137 MHz to 1020 MHz Low Power Long Range Transceiver URL: https://components101.com/sites/default/files/component_datasheet/SX1278%20Lora%20Datasheet.pdf
Tapparel J. 2019. Complete reverse engineering of LoRa PHY. Tech. Rep.
Tapparel J. et al. 2020. An open-source LoRa physical layer prototype on GNU radio. 2020 IEEE 21st International Workshop on Signal Processing Advances in Wireless Communications (SPAWC). IEEE. 1–5.
Van den Abeele F. et al. 2017. Scalability analysis of large-scale LoRaWAN networks in ns-3. IEEE Internet of Things Journal. 4(6): 2186–2198.
Xu Z. et al. 2023. From Demodulation to Decoding: Toward Complete LoRa PHY Understanding and Implementation. ACM Transactions on Sensor Networks, 18(4): 1–27.
References
Malysheva T.A. 2016. Numerical methods and computer modeling. Laboratory workshop on function approximation. Educational and methodical manual. St. Petersburg: ITMO University, 33.
Mezhetov M.A., Tikhova A.I., Vakhrusheva U.S., Fedorov A.V. 2021. Application of LoRa technology in unmanned aircraft systems. Actual problems and prospects of civil aviation development: proceedings of the X International Scientific and Practical Conference, Irkutsk, October 14-15, 2021. Volume 2. Irkutsk: Irkutsk Branch of the Moscow State Technical University of Civil Aviation, 180–185. EDN UZUCLT.
Naumov M.A. Karpovsky A.Y. 2024. Development and research of a stand for testing LoRa wireless radio communications. Proceedings of the XIX All-Russian Scientific and practical conference with international participation Engineers of the present and future: practice and prospects for partnership development in higher technical education. Taganrog. Vol. 2 330–336.
Naumov M.A., Karpovsky A.Y., Kazakov V.V. 2024. Development of a machine and mechanism control system using LoRa wireless communication technology. Collection of scientific papers of the XXIV International Scientific and Technical Conference Automation of Technological Processes. Search for Young People. Donetsk, 123–126.
Overview of LoRa technology. URL: https://itechinfo.ru/node/46 (date access: 11/01/2024).
Ponomarev A.B., Pikuleva E.A. 2014. Methodology of scientific research: textbook. manual. Perm: Publishing House of the Perm National University. research. Polytechnic University. University, 186.
Shestakovich V.P. 2012. Fundamentals of numerical methods: textbook. the method. Manual. Minsk: BGUIR, 68.
Attia T., Heusse M., Tourancheau B., Duda A. 2019. Experimental Characterization of LoRaWAN Link Quality. IEEE Global Communications Conference (GLOBECOM), Dec 2019, Waikoloa, United States. ffhal-02316402. URL: [https://hal.science/hal-02316402/document].
Baruffa G. et al. 2020. Error probability performance of chirp modulation in uncoded and coded LoRa systems. Digital Signal Processing, 106: 102828.
IoT Communication Protocols–Network Protocols Ignacio de Mendizábal. URL: https://www.allaboutcircuits.com/technical-articles/internet-of-communication-communication-protocols-network-protocols/ (date access: 11/01/2024).
Liando J.C. et al. 2019. Known and unknown facts of LoRa: Experiences from a large-scale measurement study. ACM Transactions on Sensor Networks (TOSN), 15(2): 1–35.
Naumov M.A., Karpovsky A.Yu. 2024. Development of a control system for machines and mechanisms using lora wireless communication technology. Collection of scientific papers of the XXIV International Scientific and Technical Conference Automation of Technological Processes. Search for Young People. Donetsk. 281–289.
Performance line, ARM-based 32-bit MCU with Flash, USB, CAN, seven 16-bit timers, two ADCs and nine communication interfaces. URL: http://inverter48.ru/datasheet/mcu/STM32F103C8T6.pdf?ysclid=m2swy5p2eh408905702
Robyns P. et al. 2018. A Multi-Channel Software Decoder for the LoRa Modulation Scheme. IoTBDS. 41–51.
Sornin N., Luis M., Eirich T., Kramp T., Hersent O. 2015. LoRaWAN Specification V1.0. URL: https://lora-alliance.org/wp-content/uploads/2020/11/2015_–_lorawan_specification_1r0_611_1.pdf.
SX1276/77/78/79 – 137 MHz to 1020 MHz Low Power Long Range Transceiver URL: https://components101.com/sites/default/files/component_datasheet/SX1278%20Lora%20Datasheet.pdf
Tapparel J. 2019. Complete reverse engineering of LoRa PHY. Tech. Rep.
Tapparel J. et al. 2020. An open-source LoRa physical layer prototype on GNU radio. 2020 IEEE 21st International Workshop on Signal Processing Advances in Wireless Communications (SPAWC). IEEE. 1–5.
Van den Abeele F. et al. 2017. Scalability analysis of large-scale LoRaWAN networks in ns-3. IEEE Internet of Things Journal. 4(6): 2186–2198.
Xu Z. et al. 2023. From Demodulation to Decoding: Toward Complete LoRa PHY Understanding and Implementation. ACM Transactions on Sensor Networks, 18(4): 1–27.
Abstract views: 13
Share
Published
How to Cite
Issue
Section
Copyright (c) 2025 Economics. Information Technologies

This work is licensed under a Creative Commons Attribution 4.0 International License.
