AI Assistant for Simulating Arbitrage Strategies in Finance: Architecture, Mathematical Model, and Didactic Potential

Authors

  • Mikhail V. Leonov M.T. Kalashnikov Izhevsk State Technical University
  • Marya S. Brychkina M.T. Kalashnikov Izhevsk State Technical University

DOI:

https://doi.org/10.52575/2687-0932-2025-52-4-887-896

Keywords:

AI Assistant, modular architecture, arbitrage strategy, financial modeling, adaptive learning system

Abstract

This research addresses the critical gap between theoretical knowledge and practical skills in modern financial education by designing a specialized AI assistant for simulating arbitrage strategies.
The study aims to develop a comprehensive solution that moves beyond traditional static teaching methods. The proposed methodology is based on a modular system architecture that integrates real-time data collection, an analytical core for identifying opportunities, a trading simulator, and an AI-powered dialog interface for feedback. A key innovation is the application of a reinforcement learning model, where the AI assistant acts as a meta-agent, dynamically adapting the complexity of the market simulation to the student's proficiency level. The main results include the formalized architecture of the system and a set of criteria for evaluating its pedagogical effectiveness. The study concludes that the implemented AI assistant creates an intelligent learning environment capable of providing personalized, hands-on training, thereby significantly enhancing the quality of future financiers' preparation for the digital economy.

Downloads

Download data is not yet available.

Author Biographies

Mikhail V. Leonov, M.T. Kalashnikov Izhevsk State Technical University

Doctor of Economic Sciences, Associate Professor, Head of the Department of Software, Izhevsk, Russia
E-mail: leonov@istu.ru

Marya S. Brychkina, M.T. Kalashnikov Izhevsk State Technical University

Candidate of Physical and Mathematical Sciences, Associate Professor of the Department of Software, Izhevsk, Russia

References

Список литературы

Абраменко Н.Ю. 2024. Использование нейросети в системе обучения в высшей школе. Современное педагогическое образование, 10: 167–172.

Алешина А.В., Булгаков А.Л. 2022. Децентрализованные финансы (DeFi): риски, перспективы и регулирование. Финансовые рынки и банки, 12: 23–28.

Воробьева М.В. 2024. Применение нейросетей в образовательном процессе: примеры, возможности и риски. Педагогическое образование и наука, 3: 102–108. https://doi.org/10.56163/2072-2524-2024-3-102-107.

Галагузова Ю.Н., Перекальский И.Н. 2024. Искусственный интеллект на уроках информатики: вызовы и реальность. Педагогическое образование в России, 4: 112–118.

Еремеев А.П., Подогов И.Ю. 2008. Обобщенный метод иерархического подкрепленного обучения для интеллектуальных систем поддержки принятия решений. Программные продукты и системы, 2: 35–39.

Канатьев П.В. 2024. Применение нейросетей в образовательном процессе среднего и высшего профессионального образования. Проблемы современного педагогического образования, 84(4): 67–69.

Проскуряков И.М. 2019. Особенности отдельных видов арбитража и типология арбитражных стратегий. Инновации и инвестиции, 1: 116–121.

Синь В. 2024. Искусственный интеллект как фактор модернизации высшего образования в современном Китае. Труды БГТУ. Сер. 6, История, философия: 1(281): 155–163. https://doi.org/10.52065/2520-6885-2024-281-29.

Berlinger E., Domotor B., Megyeri K., Walter G. 2025. Financial literacy of finance students: a behavioral gender gap. International Journal of Educational Management, 39(8): 116–133. https://doi.org/10.1108/IJEM-04-2024-0221

Celik T. 2024. AI-Driven Production in Modular Architecture: An Examination of Design Processes and Methods. Computer and Decision Making: An International Journal, 1: 320–339. https://doi.org/10.59543/comdem.v1i.10825

Chigbu B. I., Ngwevu V., Jojo A. 2023. The effectiveness of innovative pedagogy in the industry 4.0: Educational ecosystem perspective. Social Sciences & Humanities Open, 7(1): 100419. https://doi.org/10.1016/j.ssaho.2023.100419

Haque M.A., Li S. 2025. Exploring ChatGPT and its impact on society. AI and Ethics, 5(2): 791–803. https://doi.org/10.1007/s43681-024-00435-4

Heung Y.M.E., Chiu T.K.F. 2025. How ChatGPT impacts student engagement from a systematic review and meta-analysis study. Computers and Education: Artificial Intelligence, 8: 100361. https://doi.org/10.1016/j.caeai.2025.100361

Huberman G., Wang Z. 2017. Arbitrage pricing theory. The New Palgrave Dictionary of Economics. Palgrave Macmillan, London: 197–205. https://doi.org/10.1007/978-1-349-58802-2_53

Marei Y., Almasarwah A., Bahloul M., Afifa M. 2023. Cryptocurrencies in accounting schools? Higher Education, Skills and Work-Based Learning, 13(6): 1158–1173. https://doi.org/10.1108/HESWBL-12-2022-0284

Memarian B., Doleck T. 2024. A scoping review of reinforcement learning in education. Computers and Education Open, 6: 100175. https://doi.org/10.1016/j.caeo.2024.100175

Riedmann A., Schaper P., Lugrin B. 2025. Reinforcement learning in education: A systematic literature review. International Journal of Artificial Intelligence in Education, 1: 1–55. https://doi.org/10.1007/s40593-025-00494-6

Singun A.J. 2025. Unveiling the barriers to digital transformation in higher education institutions: a systematic literature review. Discover Education, 4(1): 37. https://doi.org/10.1007/s44217-025-00430-9

Thaiya M.S., Julia K., Mbugua S. 2022. On software modular architecture: concepts, metrics and trends. International Journal of Computer and Organization Trends, 12(1): 3–10.

Tzirides A.O.O. 2024. Combining human and artificial intelligence for enhanced AI literacy in higher education. Computers and Education Open, 6: 100184. https://doi.org/10.1016/j.caeo.2024.100184

References

Abramenko N.Yu. 2024. Ispol'zovanie neiroseti v sisteme obucheniya v vysshei shkole [The Use of Neural Networks in the Higher Education System]. Sovremennoe pedagogicheskoe obrazovanie, 10: 167–172.

Alyoshina A.V., Bulgakov A.L. 2022. Decentralizovannye finansy (DeFi): riski, perspektivy i regulirovanie [Decentralized Finance (DeFi): Risks, Prospects and Regulation]. Finansovye rynki i banki, 12: 23–28.

Vorobyeva M.V. 2024. Primenenie neirosetei v obrazovatel'nom protsesse: primery, vozmozhnosti i riski [The Use of Neural Networks in the Educational Process: Examples, Opportunities and Risks]. Pedagogicheskoe obrazovanie i nauka, 3: 102–108. https://doi.org/10.56163/2072-2524-2024-3-102-107.

Galaguzova Yu.N., Perekalsky I.N. 2024. Iskusstvennyi intellekt na urokakh informatiki: vyzovy i real'nost' [Artificial Intelligence in Computer Science Lessons: Challenges and Reality]. Pedagogicheskoe obrazovanie v Rossii, 4: 112–118.

Yeremeyev A.P., Podogov I.Yu. 2008. Obobshchennyi metod ierarkhicheskogo podkreplennogo obucheniya dlya intellektual'nykh sistem podderzhki prinyatiya reshenii [A Generalized Method of Hierarchical Reinforcement Learning for Intelligent Decision Support Systems]. Programmye produkty i sistemy, 2: 35–39.

Kanat'ev P.V. 2024. Primenenie neirosetei v obrazovatel'nom protsesse srednego i vysshego professional'nogo obrazovaniya [The Use of Neural Networks in the Educational Process of Secondary and Higher Professional Education]. Problemy sovremennogo pedagogicheskogo obrazovaniya, 84(4): 67–69.

Proskuryakov I.M. 2019. Osobennosti otdel'nykh vidov arbitrazha i tipologiya arbitrazhnykh strategii [Features of Certain Types of Arbitrage and Typology of Arbitrage Strategies]. Innovatsii i investitsii, 1: 116–121.

Sin V. 2024. Iskusstvennyi intellekt kak faktor modernizatsii vysshego obrazovaniya v sovremennom Kitae [Artificial Intelligence as a Factor in the Modernization of Higher Education in Modern China]. Trudy BSTU. Ser. 6, Istoriya, filosofiya: 1(281): 155–163. https://doi.org/10.52065/2520-6885-2024-281-29.

Berlinger E., Domotor B., Megyeri K., Walter G. 2025. Financial literacy of finance students: a behavioral gender gap. International Journal of Educational Management, 39(8): 116–133. https://doi.org/10.1108/IJEM-04-2024-0221

Celik T. 2024. AI-Driven Production in Modular Architecture: An Examination of Design Processes and Methods. Computer and Decision Making: An International Journal, 1: 320–339. https://doi.org/10.59543/comdem.v1i.10825

Chigbu B.I., Ngwevu V., Jojo A. 2023. The effectiveness of innovative pedagogy in the industry 4.0: Educational ecosystem perspective. Social Sciences & Humanities Open, 7(1): 100419. https://doi.org/10.1016/j.ssaho.2023.100419

Haque M.A., Li S. 2025. Exploring ChatGPT and its impact on society. AI and Ethics, 5(2): 791–803. https://doi.org/10.1007/s43681-024-00435-4

Heung Y.M.E., Chiu T.K.F. 2025. How ChatGPT impacts student engagement from a systematic review and meta-analysis study. Computers and Education: Artificial Intelligence, 8: 100361. https://doi.org/10.1016/j.caeai.2025.100361

Huberman G., Wang Z. 2017. Arbitrage pricing theory. The New Palgrave Dictionary of Economics. Palgrave Macmillan, London: 197–205. https://doi.org/10.1007/978-1-349-58802-2_53

Marei Y., Almasarwah A., Bahloul M., Afifa M. 2023. Cryptocurrencies in accounting schools? Higher Education, Skills and Work-Based Learning, 13(6): 1158–1173. https://doi.org/10.1108/HESWBL-12-2022-0284

Memarian B., Doleck T. 2024. A scoping review of reinforcement learning in education. Computers and Education Open, 6: 100175. https://doi.org/10.1016/j.caeo.2024.100175

Riedmann A., Schaper P., Lugrin B. 2025. Reinforcement learning in education: A systematic literature review. International Journal of Artificial Intelligence in Education, 1: 1–55. https://doi.org/10.1007/s40593-025-00494-6

Singun A.J. 2025. Unveiling the barriers to digital transformation in higher education institutions: a systematic literature review. Discover Education, 4(1): 37. https://doi.org/10.1007/s44217-025-00430-9

Thaiya M.S., Julia K., Mbugua S. 2022. On software modular architecture: concepts, metrics and trends. International Journal of Computer and Organization Trends, 12(1): 3–10.

Tzirides A.O.O. 2024. Combining human and artificial intelligence for enhanced AI literacy in higher education. Computers and Education Open, 6: 100184. https://doi.org/10.1016/j.caeo.2024.100184


Abstract views: 4

Share

Published

2025-12-30

How to Cite

Leonov, M. V., & Brychkina, M. S. (2025). AI Assistant for Simulating Arbitrage Strategies in Finance: Architecture, Mathematical Model, and Didactic Potential. Economics. Information Technologies, 52(4), 887-896. https://doi.org/10.52575/2687-0932-2025-52-4-887-896

Issue

Section

COMPUTER SIMULATION HISTORY