On the Use of Nonlinear Dynamics Methods for Detecting Signals in the Presence of Noise

Authors

  • Dmitrij L. Osipov North-Caucasus Federal University
  • Aleksey A. Gavrishev Moscow State Linguistic University

DOI:

https://doi.org/10.52575/2687-0932-2025-52-2-455-464

Keywords:

signal, noise, Hurst exponent, BDS-statistic, two-stage method

Abstract

The purpose of this article is to develop a two-stage method for detecting signals based on nonlinear dynamics in the presence of noise. It is indicated that the classical approach for detecting signals is the use of an energy detector and its various modifications. Certain disadvantages of this approach are shown, in particular, the dependence of the detection threshold on the generally unknown spectral noise power density and some others. The study reveals that a promising approach to the detection of signals is the use of nonlinear dynamics methods. The results obtained from known sources show that various methods of detecting signals based on nonlinear dynamics have both advantages and disadvantages. An integrated application of a set of nonlinear dynamics methods for detecting signals in the presence of noise is a promising approach which makes it possible to use their best qualities and offset the influence of disadvantages. Taking into account individual results from some sources, the authors have developed a two-stage method for detecting signals based on Hurst exponent H and BDS-statistics w(ε), providing a description. The evaluation of the developed method for detecting signals is carried out using the example of signals widely used in info-communication systems. The generalized conclusions based on the results of the study show that the combined use of Hurst exponent H and BDS-statistics w(ε) makes it possible to detect various classes of signals with sufficiently high reliability, the signal-to-noise ratio of which is on the order of SNR>–8 dB. The results obtained, depending on the field of their application, may help in future development of improved methods for ensuring reliable information processing and ensuring noise immunity of information communications for the purposes of transmitting, storing and protecting information, as well as evaluating these indicators.

Downloads

Download data is not yet available.

Author Biographies

Dmitrij L. Osipov, North-Caucasus Federal University

Candidate of Technical Sciences, Associate Professor of the Department of Computer Security, North-Caucasus Federal University, Stavropol, Russia

Aleksey A. Gavrishev, Moscow State Linguistic University

Candidate of Technical Sciences, Associate Professor of the Department of International Information Security, Moscow State Linguistic University, Moscow, Russia

E-mail: alexxx.2008@inbox.ru

References

Список литературы

Альтман Е.А., Малютин А.Г., Чижма С.Н. 2013. Повышение скрытности шумоподобных сигналов в системах радиосвязи. Радиотехника, электроника и связь («РЭиС-2013»): Сборник докладов II Международной научно-технической конференции. Омск: Омский научно-исследовательский институт приборостроения: 329–337.

Белов С.П., Сердюков В.С., Белов А.С., Скобченко Е.В. 2023. О формировании и обработке сложных канальных сигналов на основе частотно-временных матриц. Экономика. Информатика, 50(1): 211–218. DOI 10.52575/2687-0932-2023-50-1-211-218

Ваврив Д.М., Рябов В.Б. 1989. Фрактальная размерность: проблемы вычислений. Журнал вычислительной математики и математической физики, (7): 987–999.

Варакин Л.Е. 1985. Системы связи с шумоподобными сигналами. М.: Радио и связь, 384 с.

Васюта К.С. 2010. Оценка границ применимости R/S-статистики для фрактального анализа хаотических процессов, искаженных аддитивным белым гауссовским шумом. ЗНПХУПС, (1): 75–79.

Гавришев А.А. 2018. Моделирование и количественно-качественный анализ распространенных защищенных систем связи. Прикладная информатика, (5): 84–122.

Гавришев А.А., Жук А.П. 2018. Применение методов нелинейной динамики для исследования хаотичности сигналов-переносчиков защищенных систем связи на основе динамического хаоса. Вестник Новосибирского государственного университета. Серия: Информационные технологии, (1): 50–60. DOI 10.25205/1818-7900-2018-16-1-50-60

Гавришев А.А., Осипов Д.Л. 2021. Применение методов нелинейной динамики для обнаружения радиосигналов с псевдослучайной перестройкой рабочей частоты, используемых в каналах связи беспилотных летательных аппаратов. Сибирский пожарно-спасательный вестник, (1): 68–74. DOI 10.34987/vestnik.sibpsa.2021.20.1.012.

Гавришев А.А., Осипов Д.Л. 2023. Построение обобщенного критерия оценки качества криптостойких кодовых последовательностей, используемых в защищенных беспроводных системах связи. Научное приборостроение, (4): 111–118.

Гавришев А.А., Осипов Д.Л. 2024. Анализ свойств сверхширокополосных сигналов, влияющих на скрытность и надежность передачи данных в системах радиосвязи. Научное приборостроение, (2): 112–120.

Кузовников А.В., Семкин П.В. 2014. Способ обнаружения случайных низкоэнергетических сигналов. Патент РФ 2511598: 8.

Мухамедов Р.Р., Уткин В.В., Войнов Д.С. 2021. Способ обнаружения шумовых сигналов источников радиоизлучения на основе фрактального анализа. Программные продукты и системы, (1): 195–200. DOI: 10.15827/0236-235X.133.195-200

Поршнев С.В., Соломаха Э.В., Пономарева О.А. 2020. Об особенностях оценок показателя Херста классического броуновского движения, вычисляемых с помощью метода R/S-анализа. International Journal of Open Information Technologies, (10): 45–50.

Akintunde Mutairu Oyewale. 2015. Detection of Non-Linearity in the Time Series Using BDS Test. Journal of Applied Mathematics and Statistics. (3):184. DOI:10.11648/j.sjams.20150304.13

Kehui Sun. 2016. Chaotic Secure Communication: Principles and Technologies. Tsinghua University Press and Walter de Gruyter GmbH, 333 p.

Kočenda E., Briatka L. 2005. Optimal Range for the IID Test Based on Integration across the Correlation Integral. Econometric Reviews, Taylor & Francis Journals, (24): 265–296.

Nazarychev S.A. et al. 2019. Classification of time series using the Hurst exponent. IOP Conf. Series: Journal of Physics: Conf. Series (1328):012056. DOI:10.1088/1742-6596/1328/1/012056

Studenikin A.V., Zhuk A.P. 2021. Software model for the synthesis of increased volumes of systems of discrete orthogonal code sequences. IOP Conference Series Materials Science and Engineering. 1069(1):012039. DOI:10.1088/1757-899X/1069/1/012039

References

Al'tman E.A., Maljutin A.G., Chizhma S.N. 2013. Povyshenie skrytnosti shumopodobnyh signalov v sistemah radiosvjazi [Increasing the stealth of noise-like signals in radio communication systems]. Radio engineering, electronics and communications ("REiS-2013"): collection of reports of the II International Scientific and Technical Conference. Omsk: Omskij nauchno-issledovatel'skij institut priborostroenija Publ.: 329–337.

Belov S.P., Serdyukov V.S., Belov A.S., Skobchenko E.V. 2023. On the Formation and Processing of Complex Channel Signals Based on Time-Frequency Matrices. Economics. Information technologies, 50(1): 211–218 (in Russian). DOI: 10.52575/2687-0932-2023-50-1-211-218

Vavriv D.M., Ryabov V.B. 1989. Fraktal'naja razmernost': problemy vychislenij [Fractal dimension: problems of calculations]. Journal of Calculational mathematics and mathematical physics, (7): 987–999.

Varakin L.E. 1985. Sistemy svjazi s shumopodobnymi signalami [Communication systems with noise-like signals]. Moscow: Radio i svjaz' Publ., 384.

Vasyuta C.S. 2010. Assessment of the limits of applicability of R/S statistics for fractal analysis of chaotic processes distorted by additive white Gaussian noise. ZNPHUPS, (1): 75–79 (in Russian).

Gavrishev A.A. 2018. Modeling and quantitative and qualitative analysis of common secure communication systems. Journal of Applied Informatics, (5): 84–122 (in Russian).

Gavrishev A.А., Zhuk A.P. 2018. Application of Methods of Nonlinear Dynamics to Study the Chaotic State of the Carrier Signals of Secure Communication Systems Based on Dynamic Chaos. Vestnik NSU. Series: Information Technologies, (1): 50–60 (in Russian). DOI 10.25205/1818-7900-2018-16-1-50-60. ISSN 1818-7900.

Gavrishev A.A., Osipov D.L. 2021. Application of nonlinear dynamics methods for detecting radio signals with frequency-hopping spread spectrum used in communication channels of unmanned aerial vehicles. Siberian Fire and Rescue Bulletin, (1): 68–74 (in Russian). DOI 10.34987/vestnik.sibpsa.2021.20.1.012.

Gavrishev A.A., Osipov D.L. 2023. Building of a generalized quality assessment criterion cryptographic code sequences used in secure wireless communication systems. Nauchnoe priborostroenie, (4): 111–118 (in Russian).

Gavrishev A.A., Osipov D.L. 2024. Analysis of the properties of ultra-wideband signals affecting the secrecy and reliability of data transmission in radio communication systems. Nauchnoe priborostroenie, (2): 112–120 (in Russian).

Kuzovnikov A.V., Semkin P.V. 2014. Method of detecting random low-energy signals. Patent RF, no. 2511598: 8. (in Russian).

Mukhamedov R.R., Utkin V.V., Voinov D.S. 2021. Method for detecting source noise signals of the radio emission based on fractal analysis. Software & Systems, (1): 195–200 (in Russian). DOI: 10.15827/0236-235X.133.195-200.

Porshnev S.V., Solomaha Je.V., Ponomareva O.A. 2020. Peculiarities of estimating the Hurst exponent of classical brownian motion, using the R/S analysis. International Journal of Open Information Technologies, (10): 45–50 (in Russian).

Akintunde Mutairu Oyewale. 2015. Detection of Non-Linearity in the Time Series Using BDS Test. Journal of Applied Mathematics and Statistics, (3):184. DOI:10.11648/j.sjams.20150304.13

Kehui Sun. 2016. Chaotic Secure Communication: Principles and Technologies. Tsinghua University Press and Walter de Gruyter GmbH, 333 p.

Kočenda E., Briatka L. 2005. Optimal Range for the IID Test Based on Integration across the Correlation Integral. Econometric Reviews, Taylor & Francis Journals, (24): 265–296.

Nazarychev S.A. et al. 2019. Classification of time series using the Hurst exponent. IOP Conf. Series: Journal of Physics: Conf. Series (1328):012056. DOI:10.1088/1742-6596/1328/1/012056

Studenikin A.V., Zhuk A.P. 2021. Software model for the synthesis of increased volumes of systems of discrete orthogonal code sequences. IOP Conference Series Materials Science and Engineering. 1069(1):012039. DOI:10.1088/1757-899X/1069/1/012039


Abstract views: 26

Share

Published

2025-06-30

How to Cite

Osipov, D. L., & Gavrishev, A. A. (2025). On the Use of Nonlinear Dynamics Methods for Detecting Signals in the Presence of Noise. Economics. Information Technologies, 52(2), 455-464. https://doi.org/10.52575/2687-0932-2025-52-2-455-464

Issue

Section

INFOCOMMUNICATION TECHNOLOGIES