Benchmarking and Opportunities of AI Technologies for Fraud Prevention in the Financial Sector
DOI:
https://doi.org/10.52575/2687-0932-2025-52-1-110-124Keywords:
artificial intelligence, AI models, financial data, fraud, anomaly detection, suspicious activityAbstract
Artificial intelligence (AI) technologies cover key areas of financial sector security, including combating money laundering and fraud, collecting security data, monitoring and preventing cyber threats. The relevance of this study is explained by a lack of research on the implementation and use of AI and comparing individual AI subtechnologies, which makes it difficult to assess their effectiveness, speed and accuracy of recognizing fraudulent schemes. The goal of our research was to assess the possibilities of using various AI technologies to identify suspicious activity and anomalies and to conduct a comparative analysis of their effectiveness in combating fraud in the financial sector. The methods employed included general scientific methods of theoretical knowledge – drawing analogies, induction and deduction, comparative analysis, monographic analysis, and case study. We paid special attention to the experience of the US financial sector. As an empirical base, we used statistical data from Al-Kindi Research and Development Center. The article defines the capabilities of AI technologies: 1) at various stages of fraud prevention according to the CIMA model 2) for various types of financial fraud. According to the results of the study, the efficiency of various models ranges from 88 to 94 %, which indicates their good adaptability to various fraud detection scenarios. Machine learning subtechnologies (decision trees) and deep learning models (neural networks and convolutional neural networks) demonstrate the highest completeness of information disclosure. The positive impact of AI technologies on the fraud detection procedure is an increase in the accuracy of fraud detection by 85 %, an increase in the speed of identifying new fraud schemes by 78 %, an increase in fraud detection by 70 %, and a decrease in false positives by 92 %. We offered the following solutions for the development of AI and the prevention of fraud in the financial sector: data preparation at the collection stage, informed selection of AI models, testing the integration capabilities of AI models, and cooperation with IT companies.
Downloads
References
Список источников
Индикаторы цифровой экономики: 2024: статистический сборник. 2024. В.Л. Абашкин, Г.И. Абдрахманова, К.О. Вишневский, Л.М. Гохберг и др. Нац. исслед. ун-т «Высшая школа экономики». М.: ИСИЭЗ ВШЭ, 276. ISBN 978-5-7598-3008-5. https://doi.org/10.17323/978-5-7598-3008-5
Паспорт федерального проекта «Искусственный интеллект» национальной программы «Цифровая экономика Российской Федерации». 2020. Правительство Российской Федерации. URL: https://spa.msu.ru/wp-content/uploads/5-1.pdf (дата обращения 30.11.2024)
Дорожная карта развития «сквозной» цифровой технологии «Нейротехнологии и искусственный интеллект». 2019. Министерство цифрового развития, связи и массовых коммуникаций Российской Федерации. URL: https://digital.gov.ru/uploaded/files/07102019ii.pdf (дата обращения 30.11.2024)
Estimated value of the financial sector's artificial intelligence (AI) spending worldwide in 2023, with forecasts from 2024 to 2027. 2024. Statista.com. URL: https://www.statista.com/statistics/1446037/financial-sector-estimated-ai-spending-forecast/ (дата обращения: 30.11.2024).
F1 Score in Machine Learning: Intro & Calculation. 2022. V7 Labs. URL: https://www.v7labs.com/blog/f1-score-guide (дата обращения: 30.11.2024).
Financial sector AI spending worldwide 2023, with forecasts to 2027. 2023. Statista. URL: https://www.statista.com/statistics/1446037/financial-sector-estimated-ai-spending-forecast/
How LLMs in banking enhance fraud detection, risk assessment, and credit evaluation // Pacific Data Integrators. PDI Marketing Team. URL: https://www.pacificdataintegrators.com/ (дат обращения: 30.11.2024).
Mayanard N. 2022. AI in Financial Fraud Detection: Key Trends, Competitor Leaderboard & Market Forecasts 2022-2027. JUNIPER Research. URL: https://www.juniperresearch.com/research/fintech-payments/fraud-identity/ai-financial-fraud-detection-trends-report/
Mayanard N. 2023. AI in Financial Fraud Detection Market Summary 2022-2027. JUNIPER Research URL: https://www.juniperresearch.com/resources/infographics/ai-financial-fraud-detection-infographic/
What are evaluation metrics in natural language processing? Alooba. URL: https://www.alooba.com/skills/concepts/natural-language-processing/evaluation-metrics/ (дата обращения: 30.11.2024).
Список литературы
Бабанская А.С., Груднева А.А. 2020. Анализ и оценка финансовых рисков. Бухучет в сельском хозяйстве, 4: 66–75.
Багреева Е.Г., Исмаилов Н.Э.О., Бобылева Л.М. 2022. Искусственный интеллект как противодействие мошенничеству в банковской сфере. Евразийская адвокатура, 2 (57): 90–95. https://doi.org/10.52068/2304-9839_2022_57_2_90
Беспалов Д.А., Богатырева М.В. 2023. Роль искусственного интеллекта в финансовом секторе. Вестник Алтайской академии экономики и права, 7-1: 10–16. DOI https://doi.org/10.17513/vaael.2892
Горян Э.В. 2019. Зарубежный опыт использования технологий искусственного интеллекта в обеспечении информационной безопасности банковского сектора. Территория новых возможностей. Вестник Владивостокского государственного университета экономики и сервиса, 11, 4: 62–73. https://doi.org/10.24866/VVSU/2073-3984/2019-4/062-073
Золотова Е.А., Калашникова Е.Ю., Чувилова О.Н., Гришанов С.М. 2023. Российская и зарубежная практика искусственного интеллекта в банковской деятельности и его значимость для бизнес-процессов. Вестник Северо-Кавказского федерального университета, 1 (94): 21–31. https://doi.org/10.37493/2307-907X.2023.1.3
Хоружий Л.И., Бабанская А.С., Трясцина Н.Ю. 2018. Мошенничество с финансовой информацией: анализ и оценка деловых партнеров. Бухучет в сельском хозяйстве, 5: 68–80.
Adelakun B.O., Antwi B.O., Fatogun D.T., Olaiya O.P. 2024. Enhancing audit accuracy: The role of AI in detecting financial anomalies and fraud. Finance & Accounting Research Journal (FARJ), 6, 6: 1049–1068. https://doi.org/10.51594/farj.v6i6.1235
Bello O.A., Folorunso A., Onwuchekwa J., Ejiofor O.E., Budale F.Z., & Maryann Egwuonwu M.N. 2023. Analysing the impact of advanced analytics on fraud detection: a machine learning perspective. European Journal of Computer Science and Information Technology, 11 (6): 103–126. https://doi.org/10.37745/ejcsit.2013/vol11n6103126
Bello O.A., Ogundipe A., Mohammed D., Folorunso A., & Alonge O.A. 2024. AI-Driven approaches for real-time fraud detection in US financial transactions: challenges and opportunities. European Journal of Computer Science and Information Technology, 121(6): 88–106. https://doi.org/10.37745/ejcsit.2013/vol11n684102
Daraojimba R.E., Farayola O.A., Olatoye F.O., Mhlongo N., Oke T.T. 2023. Forensic accounting in the digital age: a U.S. perspective: scrutinizing methods and challenges in digital financial fraud prevention. Finance & Accounting Research Journal, 5, 11: 342–360. https://doi.org/10.51594/farj.v5i11.614
Hasan M.F, Amanah A.A., Fadhil A.H., & Falih A.J. 2024. Corporate political responsibility in the digital age: trends and challenges. International Conference on Science, Innovations and Global Solutions, July: 165–172. https://doi.org/10.5281/zenodo.13701910
Kamuangu P.K. 2024. A review on financial fraud detection using AI and Machine Learning. Journal of Economics, Finance and Accounting Studies (JEFAS), 6(1): 67–77. https://doi.org/10.32996/jefas.2024.6.1.7
Mohammad R. 2024. Generative AI in Fintech: advancing risk assessment and fraud detection in digital payment technologies. International Journal for Research in Applied Science & Engineering Technology (IJRASET), 12, VIII: 1318–1326. https://doi.org/10.22214/ijraset.2024.64110
Toth Z., Blut M. 2024. Ethical compass: the need for corporate digital responsibility in the use of Artificial Intelligence in financial services. Organizational Dynamics, 53, 2: 101041. https://doi.org/10.1016/j.orgdyn.2024.101041
Udeh E.O., Amajuoyi P., Adeusi K.B., Scott A.O. 2024. The role of big data in detecting and preventing financial fraud in digital transactions. World Journal of Advanced Research and Reviews, 22(02): 1746–1760. https://doi.org/10.30574/wjarr.2024.22.2.1575
References
Babanskaya A.S., Grudneva A.A. 2020. Analysis and assessment of financial risks. Accounting in agriculture, 4: 66–75.
Bagreeva E.G., Ismailov N.E.O., Bobyleva L.M. 2022. Artificial intelligence as a means of counteracting fraud in the banking sector. Eurasian Advocacy, 2 (57): 90–95. https://doi.org/10.52068/2304-9839_2022_57_2_90
Bespalov D.A., Bogatyreva M.V. 2023. The role of artificial intelligence in the financial sector. Bulletin of the Altai Academy of Economics and Law, 7-1: 10–16. DOI https://doi.org/10.17513/vaael.2892
Goryan E.V. 2019. Foreign experience of using artificial intelligence technologies in ensuring information security of the banking sector. Territory of new opportunities. Bulletin of Vladivostok State University of Economics and Service, 11, 4: 62–73. https://doi.org/10.24866/VVSU/2073-3984/2019-4/062-073
Zolotova E.A., Kalashnikova E.Yu., Chuvilova O.N., Grishanov S.M. 2023. Russian and foreign practice of artificial intelligence in banking and its significance for business processes. Bulletin of the North Caucasian Federal University, 1 (94): 21–31. https://doi.org/10.37493/2307-907X.2023.1.3
Khoruzhy L.I., Babanskaya A.S., Tryascina N.Yu. 2018. Fraud with financial information: analysis and assessment of business partners. Accounting in agriculture, 5: 68–80.
Adelakun B.O., Antwi B.O., Fatogun D.T., Olaiya O.P. 2024. Enhancing audit accuracy: The role of AI in detecting financial anomalies and fraud. Finance & Accounting Research Journal (FARJ), 6, 6: 1049–1068. https://doi.org/10.51594/farj.v6i6.1235
Bello O.A., Folorunso A., Onwuchekwa J., Ejiofor O.E., Budale F.Z., & Maryann Egwuonwu M.N. 2023. Analysing the impact of advanced analytics on fraud detection: a machine learning perspective. European Journal of Computer Science and Information Technology, 11 (6): 103–126. https://doi.org/10.37745/ejcsit.2013/vol11n6103126
Bello O.A., Ogundipe A., Mohammed D., Folorunso A., & Alonge O.A. 2024. AI-Driven approaches for real-time fraud detection in US financial transactions: challenges and opportunities. European Journal of Computer Science and Information Technology, 121(6): 88–106. https://doi.org/10.37745/ejcsit.2013/vol11n684102
Daraojimba R.E., Farayola O.A., Olatoye F.O., Mhlongo N., Oke T.T. 2023. Forensic accounting in the digital age: a U.S. perspective: scrutinizing methods and challenges in digital financial fraud prevention. Finance & Accounting Research Journal, 5, 11: 342–360. https://doi.org/10.51594/farj.v5i11.614
Hasan M.F, Amanah A.A., Fadhil A.H., & Falih A.J. 2024. Corporate political responsibility in the digital age: trends and challenges. International Conference on Science, Innovations and Global Solutions, July: 165–172. https://doi.org/10.5281/zenodo.13701910
Kamuangu P.K. 2024. A review on financial fraud detection using AI and Machine Learning. Journal of Economics, Finance and Accounting Studies (JEFAS), 6(1): 67–77. https://doi.org/10.32996/jefas.2024.6.1.7
Mohammad R. 2024. Generative AI in Fintech: advancing risk assessment and fraud detection in digital payment technologies. International Journal for Research in Applied Science & Engineering Technology (IJRASET), 12, VIII: 1318–1326. https://doi.org/10.22214/ijraset.2024.64110
Toth Z., Blut M. 2024. Ethical compass: the need for corporate digital responsibility in the use of Artificial Intelligence in financial services. Organizational Dynamics, 53, 2: 101041. https://doi.org/10.1016/j.orgdyn.2024.101041
Udeh E.O., Amajuoyi P., Adeusi K.B., Scott A.O. 2024. The role of big data in detecting and preventing financial fraud in digital transactions. World Journal of Advanced Research and Reviews, 22(02): 1746–1760. https://doi.org/10.30574/wjarr.2024.22.2.1575
Abstract views: 17
Share
Published
How to Cite
Issue
Section
Copyright (c) 2025 Economics. Information Technologies

This work is licensed under a Creative Commons Attribution 4.0 International License.