Technology of intelligent agricultural crops recognition by neural network based on multispectral multitemporal Earth remote sensing data

Authors

  • Rustam R. Asadullaev Belgorod National Research University
  • Nikolay I. Kuzmenko Belgorod National Research University

DOI:

https://doi.org/10.52575/2687-0932-2022-49-1-159-168

Keywords:

neural net, CNN, LSTM, agricultural crops classification, Sentinel-2

Abstract

This article presents a technology for recognition of crops based on Earth remote sensing data. Approbation of the technology was carried out on agricultural lands of the Belgorod region, Russian Federation. According to the crop rotation statistics, the following crops were selected: wheat, barley, corn, sunflower, soybean, sugar beet, perennial grasses and fallow lands. As input data, multispectral images from the Sentinel-2 satellite of the MSI L2A processing level were used, namely the channels of the RGB, SWIR and NIR bands. From the data obtained, time series were compiled in the growing seasons for 2018-2020. An algorithm has been developed to eliminate data gaps on days of high cloudiness to improve the quality of recognition. A convolutional-recurrent neural network was used as a classifier model. The developed model on test data showed an overall measure of accuracy F-score of 88.7%. The proposed architecture of the neural network is also applicable in other regions with a similar sowing structure, phenological phases of crops and similar climatic conditions.

Downloads

Download data is not yet available.

Author Biographies

Rustam R. Asadullaev, Belgorod National Research University

Candidate of Technical Sciences, Associate Professor of the Department of Applied Informatics and Information Technologies, Belgorod National Research University,
Belgorod, Russia

Nikolay I. Kuzmenko, Belgorod National Research University

2-year undergraduate student of the Department of Applied Informatics and Information Technologies, Belgorod National Research University,
Belgorod, Russia

References

Кононов В.М., Асадуллаев Р.Г., Кузьменко Н.И. 2020. Алгоритм подготовки мультиспектральных спутниковых данных для задачи классификации сельскохозяйственных культур. Научный результат. Информационные технологии. URL: www.rrinformation.ru/en/journal/download/2072 (дата обращения 20 января 2022).

Кузьменко Н.И., Асадуллаев Р.Г. 2020. Нейронная сеть для классификации сельскохозяйственных культур по многоспектральным данным дистанционного зондирования земли. Сборник материалов VIII международной научно-технической конференции «Информационные технологии в науке, образовании и производстве», (Белгород, 24–25 сентября 2020 г.) Белгород: ИД «БелГУ» НИУ «БелГУ»: 352–357.

Чурсин И.Н., Филиппов Д.В., Горохова И.Н., 2018. Распознавание сельскохозяйственных культур по мультиспектральным космическим снимкам высокого разрешения. Вестник компьютерных и информационных технологий. №11 (173).

Brandt J., 2019. Spatio-temporal crop classification of low-resolution satellite imagery with capsule layers and distributed attention. URL: arxiv.org/pdf/1904.10130v1.pdf (дата обращения 21 января 2022).

Copernicus Open Access Hub. URL: www.scihub.copernicus.eu/ (дата обращения 20 января 2022).

GDAL/OGR Python API. URL: www.gdal.org/python/index.html (дата обращения 1 февраля 2022).

Kamilaris A., Prenafeta-Boldú F.X., 2018. Deep Learning in Agriculture: A survey. Computers and Electronics in Agriculture. URL: www.arxiv.org/pdf/1807.11809 (дата обращения 1 февраля 2022).

Liakos K.G., Busato P., Moshou D., Pearson S., Bochits D., 2018. Machine Learning in Agriculture: A Review. Sensors (Special Issue "Sensors in Agriculture 2018"). URL: www.mdpi.com/1424-8220/18/8/2674/pdf (дата обращения 28 января 2022).

Neetu and Ray S.S., 2019. Exploring machine learning classification algorithms for crop classification using Sentinel 2 data. ISPRS – International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences Vol. XLII-3/W6. URL: www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-3-W6/573/2019/isprs-archives-XLII-3-W6-573-2019.pdf (дата обращения 27 января 2022).

Rasterio: access to geospatial raster data. URL: rasterio.readthedocs.io/en/latest/ (дата обращения 1 февраля 2022).

Shunping J., Zhang C., Xu A., Shi Y., Duan Y., 2018. 3D Convolutional Neural Networks for Crop Classification with Multi-Temporal Remote Sensing Images. Remote Sensing. URL: www.mdpi.com/2072-4292/10/1/75/pdf (дата обращения 1 февраля 2022).

Song X.-P., Huang W., Hansen M.C., Potapov P., 2021. An evaluation of Landsat, Sentinel-2, Sentinel-1 and MODIS data for crop type mapping, Science of Remote Sensing, Vol. 3.

Tensorflow Core API. URL: www.tensorflow.org/api_docs/python/tf/ (дата обращения 2 февраля 2022).

The Copernicus Sentinel-2 mission. URL: www.sentinels.copernicus.eu/web/ sentinel/missions/sentinel-2/ (дата обращения 2 февраля 2022).

Viskovic L., Kosovic I. N., Mastelic T., 2019. Crop Classification using Multi-spectral and Multitemporal Satellite Imagery with Machine Learning. In the Proceedings of the International Conference on Software, Telecommunications and Computer Networks (SoftCOM): 1–5.


Abstract views: 176

Share

Published

2022-03-30

How to Cite

Asadullaev, R. R., & Kuzmenko, N. I. (2022). Technology of intelligent agricultural crops recognition by neural network based on multispectral multitemporal Earth remote sensing data. Economics. Information Technologies, 49(1), 159-168. https://doi.org/10.52575/2687-0932-2022-49-1-159-168

Issue

Section

SYSTEM ANALYSIS AND PROCESSING OF KNOWLEDGE