Application of subband cosine transformation matrices for increasing visual quality of object’s edge on earth surface images

Authors

  • Elena V. Petrova Belgorod National Research University

DOI:

https://doi.org/10.52575/2687-0932-2021-48-2-319-331

Keywords:

edge detection, image processing, subband matrices, frequency analysis, cosine transform

Abstract

The problem of highlighting contours in images is relevant at the present time, because it is the main stage in solving the segmentation problem, which in turn is the basis for most computer vision systems. Within the framework of this article, the problem of identifying contours in images of the earth's surface is considered. A brief analysis of modern approaches to solving this problem, their main advantages and disadvantages is carried out. A method for solving this problem using subband cosine transform matrices is described. The results of computational experiments on checking the efficiency of the proposed approach and comparing the results obtained with other methods are presented. It is shown that the subband cosine transform matrices can be used to solve the problem of extracting the contours of objects on images of the earth's surface. The method proposed in the article for real images obtained from digital cameras gives better results compared to the known methods, despite the fact that some artifacts are present as a result of image processing by the proposed method.

Downloads

Download data is not yet available.

Author Biography

Elena V. Petrova, Belgorod National Research University

Graduate Student Department of Information and Telecommunication Systems and Technologies

References

Аунг Ч.Х., Тант З.П., Федоров А.Р., Федоров П.А. 2014. Разработка алгоритмов обработки изображений интеллектуальными мобильными роботами на основе нечёткой логики и нейронных сетей. Современные проблемы науки и образования. 6.

Болгова Е.В. 2017. О собственных числах субинтервальных матриц косинусного преобразования. Научные ведомости БелГУ. Сер.: Экономика. Информатика. 2 (251): 92–101.

Визильтер Ю.В., Желтов С.Ю., Князь В.А., Ходарев А.Н., Моржин А.В. 2007. Обработка и анализ цифровых изображений с примерами на LabVIEW IMAQ Vision. М., ДМК Пресс, 464.

Власов А.В., Цапко И.В. 2013. Модификация алгоритма Канни применительно к обработке рентгенографических изображений. Вестник науки Сибири. 4(10): 120–127.

Ганин А.Н., Гущина О.Н., Хрящев В.В. 2011. Анализ применения адаптивного дискретного косинусного преобразования в некоторых задачах цифровой обработки изображений. Успехи современной радио электроники. 2: 72–80.

Жиляков Е.Г., Черноморец А.А. 2013. Об оптимальном выделении субполосных компонент изображений. Информационные системы и технологии. 1 (75): 5–11.

Жиляков Е.Г., Черноморец А.А., Болгова Е.В. 2014. О разложении изображений по собственным векторам субполосных матриц. Научные ведомости БелГУ. Сер. История. Политология. Экономика. Информатика. 15 (186): 185–189.

Кирсанов М.Н. 2015. Модификация и анализ фильтров выделения контуров на изображениях. Вестник государственного университета морского и речного флота имени адмирала С.О. Макарова. 5 (33): 201–206.

Костюхина Г.В. 2020. Модель, метод и комплекс программ выделения контуров на изображениях с использованием энергетических признаков: дис. ... канд. тех. наук: 05.13.18. Костюхина Галина Викторовна; [Место защиты: ФГБОУ ВО «Казанский национальный исследовательский технический университет им. А.Н. Туполева – КАИ»].

Костюхина Г.В., Шлеймович М.П., Кирпичников А.П. 2019. Автоматизация двойной пороговой фильтрации в детекторе границ на основе модели энергетических признаков вейвлет-преобразования. Вестник технологического университета. 22 (3): 148–152.

Огнев И.В., Сидорова Н.А. 2007. Обработка изображений методами математической морфологии в ассоциативной осцилляторной среде. Известия ВУЗов. Поволжский регион. Технические науки. 4: 87–97.

Прэтт У. 1982. Цифровая обработка изображений. Пер. с англ. М., Мир. 480. (Pratt W. 1978. Digital image processing. John Wiley, 750.)

Пьянкова Т.П., Яшина М.В. 2019. Исследование свойств двумерных дискретных преобразований в компьютерном зрении. Телекоммуникации и информационные технологии. 1: 96–102.

Ракицкий В.А. 2019. Дискретное косинус-преобразование как средство компьютерной обработки информации. Проблемы информатизации и управления. 2 (62): 52–56.

Сакович И.О., Белов Ю.С. 2014. Обзор основных методов контурного анализа для выделения контуров движущихся объектов. Инженерный журнал: наука и инновации. 12 (36).

Сойфер В.А. 2003. Методы компьютерной обработки изображений. М., ФИЗМАТЛИТ, 192.

Фурман Я.А., Кревецкий А.В., Передреев А.К., Роженцов А.А., Хафизов Р.Г., Егошина И.Л., Леухин А.Н. 2002. Введение в контурный анализ и его приложения к обработке изображений и сигналов. М., Физматлит, 592.

Черноморец А.А., Болгова Е.В., Петина М.А., Коваленко А.Н., Петрова Е.В. 2019. Построение субполосных компонент изображений в рамках косинус-преобразования. В сборнике: Сборник избранных статей по материалам научных конференций ГНИИ «Нацразвитие». Материалы конференции ГНИИ «Нацразвитие» (Санкт-Петербург, 28–30 мая 2019 г.). Санкт-Петербург, ГНИИ «Нацразвитие»: 261–267.

Черноморец А.А., Болгова Е.В., Черноморец Д.А. 2019. О квазисубполосных матрицах косинус-преобразования. Научный результат. Информационные технологии. 4 (3): 11–19.

Шлеймович М.П., Кирпичников А.П., Ляшева С.А., Медведев М.В. 2017. Выделение границ на изображениях на основе модели энергетических признаков вейвлет-преобразования. Вестник технологического университета. 20 (21) 2017: 103–107.


Abstract views: 268

Share

Published

2021-06-30

How to Cite

Petrova, E. V. (2021). Application of subband cosine transformation matrices for increasing visual quality of object’s edge on earth surface images. Economics. Information Technologies, 48(2), 319-331. https://doi.org/10.52575/2687-0932-2021-48-2-319-331

Issue

Section

COMPUTER SIMULATION HISTORY