Исследование и моделирование цифровых антенных решеток с направленными элементами по азимуту и углу места при распространении ОВЧ-сигналов с потерями за счет дифракции
DOI:
https://doi.org/10.52575/2687-0932-2022-49-1-103-120Ключевые слова:
радиопеленгация, цифровое диаграммообразование, цифровые антенные решётки, MUSIC, вероятность битовой ошибки, дифракцияАннотация
Рассматривается проблема использования цифровых антенных решеток (ЦАР) c направленными элементами для УКВ диапазона. Распространение УКВ волн сопряжено такими трудностями, как затухание, рассеяние, а также дифракция, одним из способов преодоления которых может стать цифровое формирование луча в азимутальной и угломестных плоскостях. В работе представлены результаты моделирования распространения сигналов на трассе г. Елец – г. Липецк в предположении, что на передающей стороне используется симметричный диполь, а кольцевая (КАР) и полудодекаэдрическая формы расположения направленных элементов Яги – Уда на приемной ЦАР. Используется метод Эпштейна – Петерсона совместно с моделью одиночного клиновидного препятствия Международного союза электросвязи (МСЭ) для вычисления общих дифракционных потерь. Оценивается вероятность битовых ошибок в зависимости от мощности передатчика, а также в присутствии тринадцати изолированных клиновидных препятствий, расположенных на трассе распространения длиной 70 км.
Благодарности
Исследование выполнено при финансовой поддержке РФФИ и Липецкой области в рамках научного проекта № 20-47-480002.
Скачивания
Библиографические ссылки
Боков Л.А., Замотринский В.А., Мандель А.Е. 2013. Электродинамика и распространение радиоволн. Томск, Томск. гос. ун-т систем упр. и радиоэлектроники, 410.
Боровский А.В., Галкин А.Л. 2014. Численное моделирование дифракции на клине с произвольным углом. Известия Байкальского государственного университета, 1(93): 100–109.
Затучный Д.А., Сладь Ж.В. 2015. О влиянии на распространение радиоволн в городе профиля его застройки. Научный вестник Московского государственного технического университета гражданской авиации, 222(12): 37–43.
Кубанов В.П. 2013. Влияние окружающей среды на распространение радиоволн. Самара, ПГУТИ, 92.
Михайлов М.С., Пермяков В.А., Сазонов Д.М. 2014. Расчет энергетических характеристик активной фазированной антенной решетки над нерегулярной земной поверхностью методом параболического уравнения (трехмерная модель). Журнал Радиоэлектроники, 12.
Муад Халед Мохамад. 2016. Радиосистемы и устройства связи с малыми искажениями для загородных и горных трасс: диссертация кандидата технических наук: 05.12.04. Москва.
Пониматкин В.Е., Шпилевой А.А. 2010. Антенно-фидерные устройства систем связи. Калининград: Изд-во РГУ им. И. Канта, 121.
Попов В. 2015. Математические модели распространения радиоволн в лесных массивах. Евразийский Союз Ученых, 11-3(20): 107–117.
Попов В.И., Скуднов В.А., Васильев А.С. 2016. Математические модели и алгоритмы распространения радиоволн в сотовых сетях мобильной связи. Евразийский Союз Ученых, 3-3(24): 68–80.
Balanis C.A. 2005. Antenna Theory: Analysis and Design. New York, NY, USA, Wiley-Interscience, 1104.
Bibb D.A., Dang J., Yun Z., and Iskander M.F. 2014. Computational accuracy and speed of some knife-edge diffraction models. In: Proceedings of the IEEE Antennas and Propagation Society International Symposium. Memphis, USA: 705-706.
Bullington K. 1947. Radio propagation at frequencies above 30 megacycles. Proceedings of the IRE, 35(10): 1122–1136.
Changwon Lee, Sungkwon Park. 2018. Diffraction Loss Prediction of Multiple Edges Using Bullington Method with Neural Network in Mountainous Areas. International Journal of Antennas and Propagation, 2018 (8737594): 1–10.
Collin R.E. 1985. Antennas and Radiowave Propagation, McGraw-Hill, New York, 263.
Deygout J. 1966. Multiple knife-edge diffraction of microwaves. IEEE Transactions on Antennas and Propagation, 14 (4): 480–489.
Elshafie, Hashim & Fisal, Norsheila & Baguda, Yakubu & Sayuti, H. & Abdulrahman, Yasir & Mohamad, Hafizal & Ramli, Nordin & Abbas, Mazlan. 2013. Measurement of UHF Signal Propagation Loss under Different Altitude in Hilly Environment. Applied Mechanics and Materials, 311: 37–42.
Epstein J., Peterson D.W. 1953. An experimental study of wave propagation at 850 MC. Proceedings of the IRE, 41 (5): 595–611.
Gross F. 2015. Smart Antennas with MATLAB, Second Edition: Principles and Applications in Wireless Communication. McGraw Hill Professional, 400.
Gupta M.S. 2018. Physical Channel Models for Emerging Wireless Communication Systems. In: XXIIIrd International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED). Tbilisi, Georgia: 255–260.
Jordan, E., and K. Balmain. 1968. Electromagnetic Waves and Radiating Systems, 2d ed., Prentice Hall, New York, 774.
Nechaev Yu.B., Peshkov I.W., Fortunova N.A., Zaitseva I.N. and Zhigulin V.A. 2021. Research and Modeling of Digital Antenna Arrays with Directional Elements on Azimuth-Elevation in VHF Terrain and Vegetation Multipath Propagation Situations. In: Journal of physics: conference series.
Nechaev Yu.B., Peshkov I.W., Fortunova N.A., Zaitseva I.N. 2021. Study of Digital Azimuth-Elevation Beamforming With Directional Antennas in VHF Two-Ray Reflection Propagation Model. In: 2021 Systems of Signal Synchronization, Generating and Processing in Telecommunications.
Nechaev Yu.B., Peshkov I.W. 2020. An approach of DOA-Estimation Accuracy Improving via Conformal Antenna Arrays with Directional Emitters. In: 2020 Systems Of Signals Generating And Processing In The Field Of On Board Communications. Moscow Technical University of Communication and Informatics (МTUCI). Moscow, Russia: 1–5.
Nechaev Yu.B., Peshkov I.W., Fortunova N.A., Zaitseva I.N. 2018. The Estimation of Radio Direction-Finding Performance in volume Antenna Arrays with Directive Radiators by Music Method. In: Systems of Signal Synchronization, Generating and Processing in Telecommunications, IEEE Inc. Minsk, Belarus: 1–6.
Nechaev Yu.B., Peshkov I.W., Fortunova N.A., Zaitseva I.N. 2020. The Research of the Digital Beamforming Algorithm for Optimal Noise Reduction in a Cylindrical Antenna Array with Directive Radiators. In: 2020 SYNCHROINFO. Svetlogorsk, Russia: 1–5.
Recommendation ITU-R 372. Radio noise. URL: http://www.itu.int/rec/R-REC-P.372/en. (дата обращения: 10.12.2021)
Recommendation ITU-R 526. Propagation by diffraction. URL: http://www.itu.int/rec/R-REC-P.526/en. 2019. (дата обращения: 10.12.2021)
Recommendation ITU-R. Terrestrial land mobile radiowave propagation in the VHF/UHF bands. URL: http://www.itu.int/pub/R-HDB-44. 2002. (дата обращения: 10.12.2021)
Ruidong W., Dongdong Z., Guizhen Lu, Rongshu Z. 2015. Radiowave propagation loss measurement of different situated Knife-Edge problems and comparison with PO computing. In: Microwave Antenna Propagation and EMC Technologies (MAPE) IEEE 6th International Symposium on. Shanghai, China: 40–43.
Tikhomirov A., Omelyanchuk E., Semenova A. and Mikhailov V. 2017. Experimental study of UHF radio wave propagation in rough terrain. In: 2017 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). St. Petersburg and Moscow: 1293–1298.
Yan, Su, Wu, Yumao, Zhao, Huapeng, Guo, Han, 2017. Advanced Modeling and Simulation Methods for Multiphysics and Multiscale Problems. International Journal of Antennas and Propagation, Hindawi, 3051476: 1687–5869.
Yun Zh., Magdy F.I. 2015. Ray Tracing for Radio Propagation Modeling: Principles and Applications. IEEE Access, 3: 1089–1100.
Просмотров аннотации: 220
Поделиться
Опубликован
Как цитировать
Выпуск
Раздел
Copyright (c) 2022 Экономика. Информатика
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.