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Аннотация. Рассматривается влияние мощности передатчика на расстояние передачи данных в 

беспроводной сети LoRa. Эксперименты с использованием модуля SX1278 и микроконтроллера 

STM32F103C8T6 показали зависимость между мощностью сигнала и расстоянием его 
распространения. Для выявления закономерностей применены различные методы аппроксимации: 

линейная, квадратичная, кубическая, степенная и другие. Наименьшую ошибку показала степенная 

регрессия, в то время как экспоненциальные и гиперболические модели оказались наименее точными. 
Результаты могут быть полезны при проектировании радиоуправляемых систем в условиях 

ограниченного действия сигнала, например, на горных и подземных объектах. 
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Abstract. The work experimentally investigates the effect of transmitter power on the communication range in 

LoRa wireless networks, which is critically important for the energy-efficient design of IoT systems. 
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The experiments were conducted on a hardware stand with the SX1278 module and the STM32F103C8T6 
microcontroller. To analyze the resulting dependence, various regression models were tested: linear, quadratic, 

cubic, power-law, exponential, and hyperbolic. A comparison according to the RMSE and R2 criteria showed that 

the smallest error is provided by a power approximation that most accurately reflects the physics of radio signal 

attenuation. Exponential and hyperbolic models proved to be the least adequate. The practical value of the results 
lies in the possibility of optimizing the power of the transmitter to increase the battery life of the devices and reliable 

coverage in difficult terrain conditions, such as mountainous or underground facilities. 
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Введение 

Организация радиоуправления является классической задачей при проектировании 

систем управления подвижными машинами и механизмами. [Naumov, Karpovsky, 2024]  

В горно-шахтном оборудовании, в том числе и при автоматизации очистных комбайнов 

(машин для выемки пластовых полезных ископаемых), подсистема радиоуправления должна 

обеспечивать выполнение своих функций как в зоне видимости комбайна, так и за её 

пределами. Увеличение дальности радиоуправления является особо важным, и позволяет 

повысить безопасность ведения работ по выемке угольных масс путем минимизации 

присутствия человека в опасной зоне. [Наумов, Карповский, 2024; Наумов, Карповский, 

Казаков, 2024] Новым решением на рынке радиосвязи выступает технология LoRa. [Sornin et 

al., 2015, Attia, 2019] 

Современные системы автоматизации требуют надёжной и энергоэффективной 

беспроводной связи, особенно в условиях сложной производственной среды, такой как горные и 

подземные выработки. Технология LoRa отличается низким энергопотреблением и большой 

дальностью передачи, что делает её перспективной для применения в горной промышленности. 

[Обзор технологии LoRa: Межетов, 2021] Однако важным параметром, определяющим 

эффективность LoRa-связи, является мощность передатчика, от которой зависит дальность 

передачи и устойчивость сигнала. Изучение этой зависимости позволяет повысить надёжность 

радиосвязи и оптимизировать энергозатраты системы управления. [IoT Communication 

Protocols…; SX1276/77/78/79 - 137 MHz to 1020…; Performance line, ARM-based…] 

Цель исследования – определение зависимости между мощностью передатчика и 

расстоянием передачи данных в беспроводной системе связи LoRa, а также выбор наиболее 

точного метода аппроксимации экспериментальных данных для последующего использования 

в инженерных расчётах и проектировании.  

Экспериментальные исследования проводились с использованием модуля LoRa SX1278 и 

микроконтроллера. Мощность передатчика варьировалась от 0 до 17 dBm, а для каждого значения 

фиксировались расстояние передачи сигнала и уровень принимаемого сигнала (RSSI). 

[Шестакович, 2012; Baruffa G. et al. 2020] Эксперименты проводились в полевых условиях при 

различных коэффициентах расширения спектра и уровнях соотношения сигнал/шум. 

Определялась функциональная зависимость между мощностью передатчика и 

расстоянием распространения сигнала. Для этого была произведена аппроксимация 

экспериментальных данных с использованием различных типов регрессий: линейной, 

квадратичной, кубической, степенной, показательной, гиперболической, логарифмической и 

экспоненциальной. Для каждой модели рассчитывалась средняя ошибка аппроксимации, что 

позволило оценить точность и выбрать наилучшую математическую модель – ею оказалась 

степенная регрессия, показавшая минимальную погрешность (9,25 %). Для описания 

зависимости между мощностью передатчика и расстоянием передачи данных были 
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использованы модели различных классов: линейная, полиномиальные (второго и третьего 

порядка), степенная, показательная, логарифмическая, гиперболическая и экспоненциальная. 

Такой выбор обусловлен необходимостью выявления наилучшей аппроксимации 

экспериментальных данных с учётом возможных типов функциональной связи. 

Линейная модель применяется в качестве базового подхода, отражающего 

предположение о пропорциональности между переменными. Полиномиальные модели 

(квадратичная и кубическая) позволяют учитывать более сложные формы зависимости, 

включая экстремумы и участки с переменной скоростью изменения. Степенная и 

показательная модели часто применяются для описания процессов ослабления или усиления 

сигнала в радиосвязи, где наблюдается нелинейная динамика. Логарифмическая и 

гиперболическая модели используются при наличии насыщения эффекта или 

асимптотического поведения. Использование широкого набора моделей обосновано 

отсутствием априорной информации о характере зависимости, а также стремлением к 

объективному выбору наилучшей модели на основе сравнительного анализа ошибок 

аппроксимации. Это позволяет получить не только качественное, но и количественно 

надёжное описание взаимосвязи исследуемых параметров.  

В табл. 1 приведены результаты работы модуля LoRa SX1278 в связке с 

микроконтроллером при различных отношениях мощности передатчика и расстояния 

передаваемого сигнала. В ходе исследования в открытых источниках информации не было 

найдено функциональных зависимостей, описывающих законы, по которым изменяются 

переменные расстояния передачи данных по беспроводной связи LoRa. Для выведения 

функциональных зависимостей из табличных значений воспользуемся аппроксимацией.  
 

Таблица 1 

Table 1 

Результаты проведения экспериментов 

Experimental results 

Раcстояние  

от приемника  
до передатчика, м 

Уровень принимаемого 

сигнала (RSSI), dBm 
Мощность, dBm Мощность, мВт 

102 -114,34 0 1 

162 -117,63 1 1,30 

170 -116,86 5 3,2 

197 -116,03 10 10 

272 -113,03 15 32 

338 -115,87 17 50 

 
Аппроксимация зависимости расстояния передачи данных  

от мощности передатчика 

Аппроксимируем [Пономарев, Пикулева, 2014; Малышева, 2016] значения, 

представленные в табл. 1, с помощью линейной регрессии (формула 1):  
 

 𝑦̑ = 𝑎 ∙ 𝑥 + 𝑏, (1) 

где 𝑥 – мощность передатчика; у – расстояние передачи данных. 

Найдем коэффициент a по формуле 2: 
 

 𝑎 =
∑𝑥𝑖∙∑𝑦𝑖−𝑛∙∑𝑥𝑖𝑦𝑖

(∑𝑥𝑖)
2−𝑛∙∑𝑥𝑖

2 =
192,5∙1608−7∙65131

192,52−7∙13637
= 2,45, (2) 

n – количество проведенных опытов. 

Найдем коэффициент b по формуле 3: 
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 𝑏 =
∑𝑥𝑖∙∑𝑥𝑖𝑦𝑖−∑𝑥𝑖

2∙∑𝑦𝑖

(∑𝑥𝑖)
2−𝑛∙∑𝑥𝑖

2 =
197,5∙65131−13637∙1608

197,52−7∙13637
= 160,58. (3) 

Тогда уравнение (1) линейной регрессии, описывающее зависимость мощности 

передатчика от расстояния передачи данных, будет выглядеть следующим образом: 

 𝑦̑ = 2,45 ∙ 𝑥 + 160,58. 

Среднюю ошибку аппроксимаций будем находить по формуле 4: 

 𝐴̄ =
1

𝑛
∑ |

𝑦𝑖−𝑦̂𝑖

𝑦𝑖
| ∙ 100%, (4) 

где ŷ  – аппроксимированное значение расстояния передачи данных. 

Аппроксимируем значения, представленные в табл. 1, с помощью квадратичной 

регрессии.  

Уравнение квадратичной регрессии показано на формуле 5: 
 

 𝑦̑ = 𝑎 ∙ 𝑥2 + 𝑏 ∙ 𝑥 + 𝑐. (5) 

Найдем коэффициенты a, b и c с помощью системы уравнений: 

 

{
 
 

 
 𝑎 ∙∑𝑥𝑖

2 + 𝑏 ∙∑𝑥𝑖 + 𝑛 ∙ 𝑐 =∑𝑦𝑖

𝑎 ∙∑𝑥𝑖
3 + 𝑏 ∙∑𝑥2𝑖 +∑𝑥𝑖 =∑𝑥𝑖𝑦𝑖

𝑎 ∙∑𝑥𝑖
4 + 𝑏 ∙∑𝑥3𝑖 +∑𝑥2𝑖 =∑𝑥2𝑖𝑦𝑖

= 

= {
𝑎 ∙ 13637 + 𝑏 ∙ 197,5 + 7 ∙ 𝑐 = 1608

𝑎 ∙ 1158803,97 + 𝑏 ∙ 13637 + 𝑐 ∙ 197,5 = 65131
𝑎 ∙ 107308684,71 + 𝑏 ∙ 1158803,97 + 𝑐 ∙ 13637 = 4815344,58

= 

= {
𝑎 = −0,03
𝑏 = 5,64
𝑐 = 135,36

.

 

Тогда уравнение (5) квадратичной регрессии, описывающее зависимость мощности 

передатчика от расстояния передачи данных, будет выглядеть следующим образом: 

𝑦̑ = −0,03 ∙ 𝑥2 + 5,64 ∙ 𝑥 + 135,36. 

Аппроксимируем значения, представленные в табл. 1, с помощью кубичеcкой регрессии.  

Уравнение кубической регрессии показано на формуле 6: 
 

 𝑦̑ = 𝑎 ∙ 𝑥3 + 𝑏 ∙ 𝑥2 + 𝑐 ∙ 𝑥 + 𝑑. (6) 

Найдем коэффициенты a, b, c и d с помощью системы уравнений: 

 

{
 
 

 
 𝑎 ∙ ∑𝑥𝑖

3 + 𝑏 ∙ ∑ 𝑥2𝑖 + 𝑐 ∙ ∑𝑥𝑖 + 𝑛 ∙ 𝑑 = ∑𝑦𝑖
𝑎 ∙ ∑ 𝑥𝑖

4 + 𝑏 ∙ ∑𝑥3𝑖 + ∑𝑥
2
𝑖 +∑𝑥𝑖 = ∑𝑥𝑖𝑦𝑖

𝑎 ∙ ∑ 𝑥𝑖
5 + 𝑏 ∙ ∑ 𝑥4𝑖 + ∑𝑥

3
𝑖 + ∑𝑥

2
𝑖 = ∑𝑥

2
𝑖𝑦𝑖

𝑎 ∙ ∑ 𝑥𝑖
6 + 𝑏 ∙ ∑ 𝑥5𝑖 + ∑𝑥

4
𝑖 + ∑𝑥

3
𝑖 = ∑𝑥

3
𝑖𝑦𝑖

= 

= {

𝑎 ≈ 0
𝑏 = −0,05
𝑐 = 6,03
𝑑 = 134,16

.

 

Тогда уравнение (6) кубической регрессии, описывающее зависимость мощности 

передатчика от расстояния передачи данных, будет выглядеть следующим образом: 

𝑦̑ = −0,05 ∙ 𝑥2 + 6,03 ∙ 𝑥 + 134,16. 
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Аппроксимируем значения, представленные в табл. 1, с помощью степенной регрессии.  

Уравнение степенной регрессии показано на формуле 7: 
 

 𝑦̑ = 𝑎 ∙ 𝑥𝑏. (7) 

Найдем коэффициент b: 
 

𝑏 =
𝑛∙∑(ln(𝑥𝑖)∙𝑙𝑛(𝑦𝑖))−∑𝑙𝑛 (𝑥𝑖)∙∑𝑙𝑛 (𝑦𝑖)

𝑛∙∑𝑙𝑛2 𝑥𝑖−(∑ 𝑙𝑛(𝑥𝑖))
2 =

7∙88,88−15,71∙37,47

7∙246,8−246,8
= 0,24. 

Найдем коэффициент a: 

𝑎 = exp(
1

𝑛
∙ ∑𝑙𝑛 (𝑦𝑖) −

𝑏

𝑛
∙ ∑𝑙𝑛 (𝑥𝑖)) = 𝑒𝑥𝑝 (

1

7
∙ 37,47 +

0,24

7
∙ 15,71) = 123,29. 

Тогда уравнение (7) степенной регрессии, описывающее зависимость расстояния 

передачи данных от мощности передатчика, будет выглядеть следующим образом: 

𝑦̑ = 123,29 ∙ 𝑥0,24. 

Аппроксимируем значения, представленные в табл. 1, с помощью показательной 

регрессии.  

Уравнение показательной регрессии показано на формуле 8: 
 

 𝑦̑ = 𝑎 ∙ 𝑏𝑥. (8) 

Найдем коэффициент b: 

 

𝑏 = 𝑒𝑥𝑝 (
𝑛∙∑(𝑥𝑖∙ln(𝑦𝑖))−∑ 𝑥𝑖∙∑𝑙𝑛 (𝑦𝑖)

𝑛∙∑𝑥𝑖
2 −(∑𝑥𝑖)

2
) = 𝑒𝑥𝑝 (

7∙1141,6−197,5∙37,47

7∙13637−39006,25
) = 1,01. 

Найдем коэффициент a: 

𝑎 = exp(
1

𝑛
∙ ∑𝑙𝑛 (𝑦𝑖) −

ln(𝑏)

𝑛
∙ ∑𝑥𝑖) = 𝑒𝑥𝑝 (

1

7
∙ 37,47 −

0,01

7
∙ 197,5) = 157,06. 

Тогда уравнение (8) показательной регрессии, описывающее зависимость мощности 

передатчика от расстояния передачи данных, будет выглядеть следующим образом: 

𝑦̑ = 157,06 ∙ 1,01𝑥. 

Аппроксимируем значения, представленные в табл. 1, с помощью гиперболической 

регрессии.  

Уравнение гиперболической регрессии показано на формуле 9: 

𝑦̑ = 𝑎 +
𝑏

𝑥
 .                 (9) 

Найдем коэффициент b по формуле 10: 
 

 𝑏 =
𝑛∙∑

𝑦𝑖
𝑥𝑖
−∑

1

𝑥𝑖
∙∑𝑦𝑖

𝑛∙∑
1

𝑥𝑖
2 −(∑

1

𝑥𝑖
)2
=
7∙318,37−2,24∙1608

7∙1,7−5,02
= −200,46.                                       (10) 

Найдем коэффициент a по формуле 11: 
 

 𝑎 =
1

𝑛
∙ ∑𝑦𝑖 −

𝑏

𝑛
∙ ∑

1

𝑥𝑖
=
1

7
∙ 1608 +

200,46

7
∙ 2,24 = 293,95.                                (11) 

Тогда уравнение (9) гиперболической регрессии, описывающее зависимость расстояния 

передачи данных от мощности передатчика, будет выглядеть следующим образом: 

𝑦̑ = 293,95−
200,46

𝑥
. 

Аппроксимируем значения, представленные в табл. 1, с помощью логарифмической 

регрессии.  

Уравнение логарифмической регрессии показано на формуле 12: 

 𝑦̑ = 𝑎 + 𝑏 ∙ ln(𝑥).                                                             (12) 
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Найдем коэффициент b: 

𝑏 =
𝑛∙∑(𝑦𝑖∙𝑙𝑛(𝑥𝑖))−∑ 𝑙𝑛(𝑥𝑖)∙∑𝑦𝑖

𝑛∙∑𝑙𝑛2𝑥𝑖 −(∑ 𝑙𝑛(𝑥𝑖))
2 =

7∙4648,9−15,71∙1608

7∙39006,25−39006,25
= 52,03. 

Найдем коэффициент a по формуле 13: 

 𝑎 =
1

𝑛
∙ ∑𝑦𝑖 −

𝑏

𝑛
∙ ∑𝑙𝑛(𝑥𝑖) =

1

7
∙ 1608 −

52,03

7
∙ 15,71 = 112,93. (13) 

Тогда уравнение (12) логарифмической регрессии, описывающее зависимость 

расстояния передачи данных от мощности передатчика, будет выглядеть следующим образом: 

𝑦̑ = 112,93+ 52,03 ∙ 𝑙𝑛(𝑥). 

Аппроксимируем значения, представленные в табл. 1, с помощью экспоненциальной 

регрессии.  

Уравнение экспоненциальной регрессии показано на формуле 14: 

 𝑦̑ = 𝑒𝑎+𝑏∙𝑥.                                                                  (14) 

Найдем коэффициент b по формуле 15: 

 𝑏 =
𝑛∙∑(𝑥𝑖∙𝑙𝑛(𝑦𝑖))−∑ 𝑙𝑛(𝑦𝑖)∙∑𝑥𝑖

𝑛∙∑𝑥𝑖
2−(∑𝑥𝑖)

2 =
7∗1141,6−37,47∗197,5

7∙13637−39006,25
= 0,01.                                  (15) 

Найдем коэффициент a по формуле 16: 

 𝑎 =
1

𝑛
∙ ∑𝑙𝑛(𝑦𝑖) −

𝑏

𝑛
∙ ∑𝑥𝑖 =

1

7
∙ 37,47 −

0,01

7
∙ 197,5 = 5,06.                                 (16) 

Тогда уравнение (14) экспоненциальной регрессии, описывающее зависимость 

расстояния передачи данных от мощности передатчика, будет выглядеть следующим образом: 

𝑦̑ = 𝑒5,06+0,01∙𝑥. 
 

Результаты экспериментов 

В табл. 2 приведены средние ошибки аппроксимаций в процентном соотношении.  
На рис. 1 приведены графики исходной функции и функциональных зависимостей, 
полученных различными методами аппроксимации.  

Для проверки адекватности полученных моделей и оценки значимости включённых в 
них параметров были рассчитаны основные статистические характеристики: коэффициент 
детерминации (R²), t-статистики и соответствующие p-значения (p-value). Расчёты 
проводились с использованием инструмента «Регрессия» в Microsoft Excel на базе метода 
наименьших квадратов. 

Анализ показал, что для линейной модели коэффициент детерминации составил  
R² ≈ 0,85, что указывает на высокую долю объяснённой дисперсии зависимой переменной 
(расстояния передачи данных) мощностью передатчика. Для степенной модели, которая 
продемонстрировала наименьшую ошибку аппроксимации, значение R² превышает 0,91, что 
подтверждает её высокую объяснительную силу. 

t-критерии для коэффициентов регрессий продемонстрировали, что все параметры 
моделей (включая свободные члены и коэффициенты при независимых переменных) являются 
статистически значимыми на уровне значимости α = 0,05. Это означает, что вероятность 
случайного появления таких коэффициентов при отсутствии зависимости между 
переменными составляет менее 5 %. 

Таким образом, полученные модели не только обеспечивают хорошее приближение 
экспериментальных данных, но и обладают статистической достоверностью. Это позволяет 
использовать их в инженерных расчётах и прикладных задачах проектирования систем 
беспроводной связи на базе технологии LoRa.  

Для оценки степени связи между мощностью передатчика (факторной переменной) и 

расстоянием передачи данных (результирующей переменной) был рассчитан коэффициент 

детерминации R², который отражает долю дисперсии зависимой переменной, объясняемую моделью. 
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Для различных моделей значение R² варьировалось от 0,78 (экспоненциальная модель) 

до 0,91 (степенная модель). Наиболее высокий уровень связи был установлен для степенной 

регрессии, что подтверждает её лучшую аппроксимирующую способность по сравнению с 

остальными моделями. Значение R² = 0,91 означает, что 91 % изменчивости расстояния 

передачи данных объясняется изменениями мощности передатчика, что свидетельствует о 

высокой существенности взаимосвязи между переменными. 

В табл. 2 представлены рассчитанные значения t-статистики для коэффициентов моделей. 

Они позволяют оценить, являются ли коэффициенты статистически значимыми при стандартном 

уровне значимости (обычно α = 0,05). Значения |t|>2 (приблизительно) свидетельствуют о 

значимости соответствующего коэффициента. В табл. 2 приведена оценка степени связи между 

результирующей и факторной переменными на основе коэффициента детерминации (R²) и  

F-статистика для оценки значимости каждой регрессионной модели. Все модели показывают  

F-статистику, превышающую типовые критические значения F при уровне значимости  

0,05 (например, F_крит ≈ 7,71 для df1 = 1, df2 = 4), что указывает на статистическую значимость 

моделей в целом. Наиболее значимой оказалась степенная модель – F = 40,44. 

Таблица 2 

Table 2 

Статистические показатели качества моделей регрессии 

Statistical indicators of the quality of regression models 

Регрессия 
Коэффициент 

детерминации (R2) 
t-статистика F-статистика 

Линейная 0,85 4,57 22,67 

Квадратичная 0,89 4,8 12,14 

Кубическая 0,89 -3 5,39 

Степенная 0,91 6,1 40,44 

Показательная 0,78 1,8 14,18 

Гиперболическая 0,77 -2,39 13,39 

Логарифмическая 0,88 5,89 29,33 

Экспоненциальная 0,78 1,9 14,18 
 

Также была проведена проверка значимости связи с использованием F-критерия  

(F-теста), где нулевая гипотеза предполагает отсутствие связи между переменными. 

Полученные значения F-критерия оказались существенно выше критического уровня для 

соответствующей степени свободы, что позволило отвергнуть нулевую гипотезу и 

подтвердить статистическую значимость зависимости. 

Таким образом, можно заключить, что между мощностью передатчика и расстоянием 

передачи существует статистически значимая и практически существенная связь, что 

обосновывает возможность использования построенных моделей в инженерной практике.  
 

 

Таблица 3 

Table 3 

Средняя ошибка различных методов аппроксимации 

Average error of various approximation methods 

Метод аппроксимации Средняя ошибка, % 

Линейная регрессия 15,26 

Квадратичная регрессия 9,89 

Кубическая регрессия 9,89 

Степенная регрессия 9,25 

Показательная регрессия 19,44 

Гиперболическая регрессия 19,66 

Логарифмическая регрессия 10,12 

Экспоненциальная регрессия 19,44 
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Рис. 1. График табличных экспериментальных значений и графики аппроксимированных функций 
Fig. 1. Graph of tabular experimental values and graphs of approximated functions  

 
Содержательный анализ полученных результатов 

Полученные зависимости между мощностью передатчика и расстоянием передачи 

данных позволяют сделать ряд значимых выводов. Прежде всего, выявлена нелинейная 

природа связи между исследуемыми переменными. Линейная модель оказалась недостаточно 

точной (средняя ошибка 15,26 %), что указывает на ограниченность её применения при 

инженерных расчётах для беспроводной связи LoRa. 

Наилучшие результаты продемонстрировала степенная модель, показавшая наименьшую 

ошибку аппроксимации (9,25 %). Это свидетельствует о том, что увеличение мощности передатчика 

приводит к росту расстояния передачи данных, однако данная зависимость характеризуется 

убывающей отдачей: на определённом этапе дополнительное увеличение мощности не приводит к 

существенному приросту расстояния. Данный эффект согласуется с физической природой 

распространения радиоволн в условиях затухания сигнала и поглощения в среде. 

Модели второго и третьего порядка (квадратичная и кубическая) дали схожие 

результаты по точности, что указывает на возможность описания зависимости полиномами, 

однако они уступают степенной модели по интерпретируемости и устойчивости при 

экстраполяции. 

Наименее точными оказались гиперболическая, показательная и экспоненциальная 

регрессии, что может быть связано с тем, что данные модели плохо отражают реальные 

условия распространения сигнала в сложных промышленных и подземных средах, где 

присутствуют многолучевость, отражения и затухание. 

Результаты аппроксимации согласуются с практическими наблюдениями и 

техническими характеристиками оборудования LoRa. Выбор адекватной модели важен не 

только с точки зрения точности, но и для построения инженерных моделей, используемых в 

системах управления горной техникой, где необходимо заранее рассчитывать зоны надёжной 

связи при ограничениях по потреблению энергии. 

Дополнительно можно отметить, что модели были оценены на небольшом наборе 

экспериментальных точек. Это требует аккуратного подхода к интерпретации результатов за 

пределами экспериментального диапазона. Для повышения обобщающей способности 

моделей в дальнейшем рекомендуется проведение повторных экспериментов в различных 

средах и условиях, а также использование методов перекрёстной проверки и построение 

доверительных интервалов для предсказаний.  
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Заключение 

Исходя из табл. 3 и графиков, представленных на рис. 1, можно сделать вывод, что 

наиболее точным методом аппроксимации зависимости расстояния от мощности передатчика 

является степенная регрессия.  

Основной задачей исследования является установление функциональной зависимости 

между мощностью передатчика и расстоянием передачи данных на основе 

экспериментальных точек, полученных в однородных условиях. Следует отметить, что в 

рамках настоящей статьи не проводился анализ ошибки обобщения, связанной с переносом 

полученной модели на новые данные или иные условия эксплуатации. Вопросы оценки 

обобщающей способности модели, включая методы перекрёстной проверки и построение 

доверительных интервалов, предполагается рассмотреть в дальнейших исследованиях. 

Таким образом, в ходе проведения исследований были выявлены зависимости между 

мощностью передатчика и расстоянием передачи данных. Получены функциональные 

описания этих зависимостей различными методами аппроксимации экспериментальных 

данных, вычислены ошибки регрессии в процентном соотношении. Выделены наиболее 

точные методы аппроксимации данных, полученных в результате эксперимента. Полученные 

результаты могут быть использованы при проектировании и оптимизации беспроводных 

систем управления, особенно в условиях ограниченной видимости и труднодоступных 

производственных зонах, где критически важны надёжность и дальность связи. В дальнейшем 

планируется проведение дополнительных исследований в различных средах распространения 

сигнала для расширения применимости полученных выводов. 
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