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Аннотация. Целью исследования является анализ современных методов машинного обучения для 
обработки электромиографических (ЭМГ) сигналов, применяемых в управлении технологичными 
протезами. Исследование направлено на сравнение эффективности классических и нейросетевых 
подходов, оценку их точности и выявление ключевых факторов, влияющих на результаты. В статье 
проведён обзор существующих исследований, посвящённых обработке ЭМГ-сигналов с 
использованием машинного обучения. Рассмотрены популярные наборы данных (например, NinaPro), 
а также различные методы обработки сигналов: классические (LDA, KNN) и современные 
нейросетевые архитектуры (EMGHandNet, CNN-RNN и др.). Особое внимание уделено 
сравнительному анализу точности моделей в зависимости от используемых данных, архитектур и 
параметров методов. Анализ показал, что современные нейросетевые модели (ConTraNet, CNN-RNN) 
демонстрируют более высокую точность по сравнению с классическими методами (SVM, LDA, RF и 
др.), однако их эффективность сильно зависит от качества и разнообразия данных. Выявлены 
ограничения, связанные с недостаточным тестированием на различных наборах данных, что указывает 
на необходимость стандартизации экспериментов. Также подтверждена важность предварительной 
обработки сигналов и качества ЭМГ-датчиков для достижения стабильных результатов. Применение 
методов машинного обучения, особенно нейросетевых архитектур, перспективно для создания более 
точных и адаптивных протезов. Однако для дальнейшего развития технологии требуется решение 
проблем универсализации моделей, расширения тестовых данных и улучшения их качества. 
Дополнительные исследования должны быть направлены на интеграцию систем в реальные условия 
эксплуатации и повышение интерпретируемости результатов. 
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Abstract. The purpose of the research is to analyze modern machine learning methods for processing 

electromyographic (EMG) signals used in the control of advanced prosthetics. The study aims to compare the 
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effectiveness of classical and neural network approaches, evaluate their accuracy, and identify key factors 

influencing the results. The article provides a review of existing research dedicated to the processing of EMG 

signals using machine learning. Popular datasets (e.g., NinaPro) as well as various signal processing methods 
were reviewed: classical ones (LDA, KNN) and modern neural network architectures (EMGHandNet, CNN-

RNN, etc.). Special attention is given to the comparative analysis of model accuracy depending on the used 

data, architectures, and method parameters. The analysis showed that modern neural network models 

(ConTraNet, CNN-RNN) demonstrate higher accuracy compared to classical methods (SVM, LDA, RF, etc.), 
however, their effectiveness heavily depends on the quality and diversity of the data. Limitations have been 

identified related to insufficient testing on various datasets, indicating the need for standardization of 

experiments. The importance of signal preprocessing and the quality of EMG sensors for achieving stable 
results has also been confirmed. The application of machine learning methods, especially neural network 

architectures, is promising for creating more accurate and adaptive prosthetics. However, further development 

of the technology requires addressing the issues of model generalization, expanding test data, and improving 

their quality. Additional research should focus on integrating systems into real-world operating conditions and 

improving the interpretability of results.  

Keywords: machine learning in prosthetics, electromyographic signals, neural networks, prosthetic control, 

EMG signal processing 
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Введение 

Современное протезирование конечностей стремительно развивается, переходя от 

механических и пассивных конструкций к интеллектуальным системам, способным 

эффективно взаимодействовать с человеком и адаптироваться к его потребностям. Потеря 

конечности – это не только физическая, но и психологическая травма, поэтому одной из 

ключевых задач биомедицинской инженерии остается создание функциональных протезов, 

которые максимально могли бы воспроизвести естественные движения и вернуть пациенту 

нормальное качество жизни. Традиционные методы протезирования включают в себя как 

простые механические устройства, так и миоэлектрические системы, которые используют 

поверхностные сигналы электромиографии (ЭМГ) для управления протезами. В последние 

годы наблюдается бурный рост применения методов машинного обучения для анализа  

ЭМГ-сигналов и повышения точности управления. Эти методы могут помочь улучшить 

распознавание жестов пользователя протезом, учитывать индивидуальные особенности 

мышечной активности и обеспечивать более плавное и интуитивное управление. Целью 

работы является систематизирование и сравнение классических методов машинного обучения 

и нейронных сетей, используемых при обработке ЭМГ-сигналов для управления протезами, 

выделив наиболее перспективные подходы. Полученные выводы позволяют оценить текущее 

состояние технологий, связанных с использованием машинного обучения в протезировании, 

перспективы развития и общие проблемы исследований. 

 

Классификация протезов 

Протезы верхних и нижних конечностей классифицируются по следующим типам: 

Косметические – предназначены для воссоздания внешнего (физического) вида 

конечности. Такие устройства (особенно заменители кисти) часто изготавливают из силикона как 

наиболее мягкого, упругого и естественно выглядящего материала [Коробенков и др., 2019].  

Активные – протезы управляются тягами, которые приводятся в действие 

определёнными движениями человека или непосредственно за счёт движений культи или 

сегмента поражённой конечности. 
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Протезы с микропроцессорным управлением (бионические) – движения его 

исполнительными механизмами осуществляются за счёт электроприводов, управляются с 

помощью электронных устройств, с использованием микропроцессоров, датчиков  

ЭМГ-сигнала [Уразбахтина и др., 2022] или другими техническими компонентами. 

Рабочие – протезы с приёмниками и различного рода насадками (например, под молоток, 

ключ, ножницы, зубило, зажим для отверток и т. п. [Коробенков и др., 2019]) для выполнения 

специализированных бытовых и рабочих операций. Количество насадок и их назначение 

зависят от пожеланий владельца.  

Протезы существенно различаются по своей конструкции, уровню управления и 

функциональности – от простейших механических устройств до интеллектуальных 

миоэлектрических систем. Однако для современного технологичного протеза ключевым 

условием эффективного использования остается надежная система управления, способная 

точно интерпретировать намерения пользователя. 

В этом контексте особую роль играют датчики электромиографии (ЭМГ), которые 

обеспечивают связь между мышечной активностью и движением протеза. Их точность, 

чувствительность и особенности размещения непосредственно влияют на качество 

управления. Далее рассмотрены характеристики ЭМГ-датчиков и их принцип работы, а также 

применение методов машинного обучения как ключевого инструмента для обработки ЭМГ-

сигналов и построения интеллектуальных систем управления протезами. 

 

ЭМГ-датчики 

Электромиографические (ЭМГ) датчики используются для измерения электрической 
активности мышц, что позволяет применять их не только в медицине и реабилитации, но и в 
разработке протезов. В данный момент исследования сосредоточены на улучшении их 
функциональности, а также надежности и точности. В протезировании используются 
электрические сигналы, генерируемые во время сокращения остаточных мышц конечностей 
для управления сервоприводами [Kuiken et al., 2009; Resnik, 2011]. 

Наиболее часто используемыми являются поверхностные ЭМГ-датчики. Они 
представляют собой гибкие емкостные датчики, обеспечивающие неинвазивное измерение 
мышечной активности и обладают возможностью интеграции в носимые устройства для 
мониторинга состояния здоровья и управления протезами [Ng et al., 2024; Ng et al., 2023]. 
Их недостатками являются: 

– ограниченное пространство для размещения и чувствительность к изменению 
положения электродов [Resnik, 2011; Персон, 1969]; 

– слабые сигналы для управления протезом. 
Существуют также инвазивные, внутримышечные ЭМГ-датчики, которые 

устанавливаются с помощью иглы в целевую мышцу [Becerra-Fajardo et al., 2024]. 
Имплантируемые датчики обладают рядом преимуществ, заключающихся в:  

– устойчивости к смещению и исключении необходимости замены перед каждым 
использованием (что требует перекалибровки системы) [Young et al., 2011]; 

– устранении перекрёстных помех и возможности управлять большим числом степеней 
свободы за счёт использования нескольких электродов [Dewald et al., 2019]; 

– осуществлении доступа к более изолированным и специфическим сигналам от 
отдельных мышц; 

– присутствии меньшего количества артефактов и внешних помех при считывании 
сигнала. 

Однако инвазивность процедуры установки, анатомические особенности людей, 
биосовместимость компонентов, способы передачи данных и энергопитания датчиков, 
находящихся внутри тела человека, становятся серьезными сложностями в протезировании.  

Современные ЭМГ-системы используют множество различных технологий, включая 
многоканальные беспроводные системы, обеспечивающие высокую точность и низкое 
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энергопотребление, что позволяет сделать систему удобнее для использования людьми и 
упростить интеграцию в компоненты протезов. Новые разработки включают в себя 
использование многослойных сенсоров, которые позволяют одновременно измерять ЭМГ, 
механомиографию и ближнюю инфракрасную спектроскопию, что дает возможность более 
детально анализировать мышечную активность [Kimoto et al., 2023].  

 

Применение машинного обучения для обработки ЭМГ-сигнала 

Анализ исследований применения машинного обучения для обработки ЭМГ-сигналов 

представлен в виде трех таблиц. В табл. 1 указаны наборы данных и их составляющие, 

используемые в исследованиях, а также методы, их архитектура, параметры и 

гиперпараметры. 

 

Таблица 1 

Table 1 

Наборы данных и методы, используемые в исследовании  

Datasets and methods used in the research 

Название и год 

исследования / 
Name and year  

of the research 

Тип данных  

в датасете / Type  

of data in the dataset 

Жесты / Gestures 

Оценка 
объема 

данных  

в датасете / 
Estimating 

the amount  

of data  
in a dataset 

Параметры  

и архитектура 

решений / 
Parameters  

and architecture  

of solutions 

An Improved 

Performance of 

Deep Learning 
Based on 

Convolution Neural 

Network to Classify 
the Hand Motion by 

Evaluating Hyper 

Parameter, 2020 

[Triwiyanto et al., 
2020] 

EMG-сигналы 

(сырые), частота 

дискретизации  
4000 Гц [Khushaba 

et al., 2012] 

10 жестов: 

движения 

пальцев (сжатия: 
большой палец, 

указательный, 

средний, 
безымянный, 

мизинец; 

комбинированные 

сжатия: большого 
пальца с 

указательным, 

большого пальца 
со средним, 

большого пальца 

с безымянным, 
большого пальца 

с мизинцем, 

Сжатие кисти) 

Каждый 

субъект: 

2 канала, 
10 движений, 

20 000 

выборок, 
6 испытаний 

CNN: 

Размер окна: 200 мс 

(800 выборок) 
Перекрытие окна: 

100 выборок 

Фильтры: 100 

Размер ядра: 8 

Паддинг: 0 

Шаг: 1 

Функция 
активации: ReLU 

Оптимизатор: 

Adam 

Dropout: 0.5 

SVM, KNN, LDA: 

Выделенные 
признаки: RMS, 

MAV, WL, ZC, 

SSC [Hudgins et al., 

1993; Triwiyanto et 
al., 2017; Kilic, 

2017] 

Оконная длина: 
200 мс 

Перекрытие окна: 

100 мс 
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Название и год 

исследования / 
Name and year  

of the research 

Тип данных  

в датасете / Type  

of data in the dataset 

Жесты / Gestures 

Оценка 

объема 

данных  

в датасете / 
Estimating 

the amount  

of data  
in a dataset 

Параметры  

и архитектура 

решений / 
Parameters  

and architecture  

of solutions 

A Novel Attention-

Based Hybrid CNN-

RNN Architecture 
for sEMG-Based 

Gesture 

Recognition, 2018 
[Hu et al., 2018] 

sEMG-сигналы 

(NinaPro DB1) 

[Atzori et al., 2014] 

52 14040  Сеть состоит из 

семи слоев: два 

свёрточных слоя с 
64 фильтрами 3×3, 

два локально-

связанных слоя с 
64 фильтрами 1×1, 

три полносвязных 

слоя (512, 512 и 
128 нейронов), 

LSTM  

с 512 нейронами, 

механизм 
внимания, 

полносвязный слой 

G-way и Softmax 

sEMG-сигналы 

(NinaPro DB2) 

[Atzori et al., 2014] 

50 12 000  

sEMG-сигналы 

(BioPatRec26MOV) 

[Ortiz-Catalan et al., 
2013] 

26 1326  

sEMG-сигналы 

(CapgMyo-DBa) 
[Geng et al., 2016] 

8 1440 

sEMG-сигналы 

(csl-hdemg) [Amma 
et al., 2015] 

27 1350 

Анализ 
эффективности 

методов 

машинного 

обучения в задаче 
распознавания 

жестов на основе 

данных 
электромиографиче

ских сигналов, 

2021 [Козырь, 
Савельев, 2021] / 

Analysis of the 

Effectiveness of 

Machine Learning 
Methods 

in the Problem of 

Gesture Recognition 
Based on the Data 

of 

Electromyographic 

Signals 

Электромиографи-
ческие сигналы 

(ЭМГ) 

Сжатие кулака, 
знак «большой 

палец», знак 

«Виктория», 

сжатие 
указательного 

пальца, взмах 

рукой справа 
налево 

5000 жестов 
на 

эксперимент, 

три 

эксперимента 

Метод опорных 
векторов (SVM): 

C=1.0, kernel=rbf, 

gamma=0.33 

Дерево решений: 
criterion=gini, 

splitter=best, 

max_depth=None, 
min_samples_split=2 

Наивный 

Байесовский 

классификатор 

(НБК): 

priors=None, 

var_smoothing=1e-9 

Случайный лес: 

n_estimators=100, 

criterion=gini, 
max_depth=None, 

min_samples_split=2 

Метод  

k-ближайших 
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Название и год 

исследования / 
Name and year  

of the research 

Тип данных  

в датасете / Type  

of data in the dataset 

Жесты / Gestures 

Оценка 

объема 

данных  

в датасете / 
Estimating 

the amount  

of data  
in a dataset 

Параметры  

и архитектура 

решений / 
Parameters  

and architecture  

of solutions 

соседей (kNN): 

n_neighbors=3, 

weights=uniform, 
algorithm=auto, 

leaf_size=30, 

metric=minkowski, 
p=2 

Градиентный 

бустинг 
(XGBoost): 

objective=multi:soft

prob, max_depth=6, 

subsample=1, 
tree_method=exact, 

booster=gbtree, 

base_score=0.5 

Ансамбли 

методов (разные 

комбинации НБК, 

дерева решений и 
градиентного 

бустинга)  

с voting=hard  
и weights от (1.1) 

до (2.1) 

ConTraNet:  

A Hybrid Network 
for Improving the 

Classification of 

EEG and EMG 
Signals with Limited 

Training Data, 2023 

[Ali et al., 2023] 

MI-EEG (Physionet 

MI-EEG [Goldberger 
et al., 2000]) 

Левый кулак (L) 

или правый кулак 
(R) – 

воображаемое 

движение. Также 
три повторения 

задания MI для 

обоих кулаков (B) 
или обеих стоп 

(F). 

Каждое 

повторение 
длится  

120 секунд  

и содержит  
14 испытаний 

MI, всего  

42 испытания 
(21 испытание 

на класс) на 

участника. 

ConTraNet: 

алгоритм 
оптимизации: 

Adam; Количество 

эпох: 100; 
Скорость 

обучения: 0.001 

(эпохи 0–50), 
0.0001 (эпохи 51–

100); Количество 

свёрточных ядер: 

16; Dropout в CNN-
блоке: 0.5; Dropout 

в MLP-блоке: 0.7 

CNN-LSTM: Один 
сверточный слой с 

32 ядрами 

размером (1.125). 

Шаг 1, padding 
'valid'. Активация 

ReLU. Один слой 

LSTM с 200 

sEMG (Mendeley 
Data – sEMG 

[Ozdemir et al., 

2022]) 

Покой 
(нейтральное 

состояние), 

разгибание 
запястья, 

сгибание 

запястья, 

локтевое 
отклонение 

запястья, лучевое 

отклонение 

Каждый 
участник 

прошел пять 

повторяющи
хся циклов. 

Каждый 

цикл длится 

104 секунды, 
каждое 

движение 

кисти –  
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и архитектура 

решений / 
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and architecture  

of solutions 

запястья, хват, 

отведение всех 

пальцев, 
приведение всех 

пальцев, 

супинация  
и пронация. 

6 секунд с  

4 секундами 

отдыха 
между ними. 

нейронами и один 

полносвязный слой 

с 100 нейронами. 

sEMG (Mendeley 

Data – sEMG V1 

[Ozdemir, 2021]) 

Покой 

(нейтральное 

состояние), 
разгибание 

запястья, 

сгибание 
запястья, 

локтевое 

отклонение 
запястья, лучевое 

отклонение 

запястья, удар 

кулаком, 
открытая ладонь. 

Каждый 

цикл длится 

74 секунды, 
каждое 

движение 

кисти –  
6 секунд  

с 4 секундами 

отдыха 
между ними. 

Classification of 

Electromyographic 

Hand Gesture 
Signals Using 

Machine Learning 

Techniques, 2020 
[Jia et al., 2020] 

Электромиографич

еские (EMG) 

сигналы 

10 жестов 480 записей 

(320 

тренировочн
ые, 160 

тестовые), 

каждый 
сегмент 

20000×2 

CAE+CNN: 250 

эпох, размер 

пакета 20, 
оптимизация: 

Adam, функция 

потерь: MSE, 
структура: 

свёрточный 

автоэнкодер (CAE) 
с Conv2D, 

BatchNormalization, 

ReLU, MaxPooling 

CNN: 100 эпох, 
размер пакета 15, 

оптимизация: 

Adam 

Нейронная сеть 

(NN): 3 скрытых 

слоя, 21 нейрон в 
каждом, 

оптимизация: LM, 

CGB, Adam 

K-ближайших 

соседей (KNN): 
Число соседей: 5, 

метрика: 
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Оценка 
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и архитектура 

решений / 
Parameters  

and architecture  

of solutions 

Минковского, 

размер листа: 30 

Метод случайного 

леса (Random 

Forest): Bootstrap: 

True, критерий: 
Gini, вес классов: 

1.0 

Решающее дерево 

(Decision Tree): 
Splitter: Best, 

критерий: Gini, вес 

классов: 1.0 

Метод опорных 

векторов (SVM): 
Ядро: RBF, 
Coefficient: 0.0, 

Регуляризация: 1.0 

Логистическая 

регрессия: 
Регуляризация: L2, 

Fit intercept: True, 

Cross-
validation:Stratified 

K-Folds 

Наивный 

байесовский 

классификатор 

(Naive Bayes): 
Гладкость 
дисперсии: 10⁻⁹ 

Classification of 

EMG Signals Using 
Convolution Neural 

Network, 2020 

[Bakırcıoğlu, 

Ozkurt, 2020] 

Электромиографич

еские (EMG) 
сигналы 

6 жестов: 

Cylindrical, Tip, 
Hook, Palmar, 

Spherical, Lateral 

86 400 

образцов 
окон 

размером 

150 точек 

Алгоритм SGD с 

моментом 
(SGDM), 

начальная 

скорость обучения 

0.01, 6 эпох, 
данные 

перемешиваются в 

каждой эпохе. 
CNN1: input layer 

(2, 150); 

convolution layer 

(1, 50), 80; max 
pooling (1, 2); 

convolution layer 

(1, 60), 100; max 
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и архитектура 

решений / 
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and architecture  

of solutions 

pooling (1, 2); 

convolution layer 

(1, 70), 120; fully 
connected layer (6). 

CNN2: input layer 

(2, 150); 
convolution layer 

(1, 10), 100; max 

pooling (1, 2); 
convolution layer 

(1, 20), 120; max 

pooling (1, 2); 

convolution layer 
(1, 30), 140; fully 

connected layer (6). 

CNN3: input layer 
(2, 150); 

convolution layer 

(1, 15), 80; max 

pooling (1, 2); 
convolution layer 

(1, 20), 100; max 

pooling (1, 2); 
convolution layer 

(1, 25), 120; fully 

connected layer (6). 
CNN4: input layer 

(6, 150); 

convolution layer 

(1, 50), 80; max 
pooling (1, 2); 

convolution layer 

(1, 60), 100; max 
pooling (1, 2); 

convolution layer 

(1, 70), 120; fully 
connected layer (6). 

Intra-Subject 

Approach 

for Gait-Event 
Prediction by Neural 

Network 

Interpretation 

of EMG Signals, 
2019 [Di Nardo, 

2019] 

sEMG-сигналы 

(электромиография) 

Фазы походки: 

stance (опорная) и 

swing 
(маятниковая), 

моменты heel-

strike (HS) и toe-

off (TO) [Lerner et 
al., 2014] 

Примерно 

10 000 

шагов,  
10 sEMG 

сигналов на 

участника  

(5 мышц на 
каждую 

ногу) 

Модель: 

многослойный 

персептрон (MLP) 
с 3 скрытыми 

слоями (512, 256, 

128 нейронов)  

Функция 
активации: ReLU  
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и архитектура 

решений / 
Parameters  

and architecture  

of solutions 

Выходной слой: 
сигмоидная 

функция (порог 0.5)  

Оптимизатор: 
стохастический 

градиентный спуск 
(SGD)  

Функция потерь: 
бинарная кросс-
энтропия  

Скорость 

обучения: 0.01  

Ранняя 

остановка: 
прекращение 

обучения после  
10 эпох без 

улучшений  

Количество эпох: 
до 100  

Кросс-валидация: 
10-кратная (intra-

subject) и leave-
one-out (inter-

subject) 

A Novel Channel 

Selection Method 
for Multiple Motion 

Classification Using 

High-Density 
Electromyography, 

2014 [Geng et al., 

2014] 

Высокоплотные 

EMG-сигналы 

21 движения руки 

и кисти, одно "без 
движения" 

Каждое 

движение 
выполнялось 

в течение  

6 секунд, 
повторялось 

6 раз, всего 

1524 
элемента. 

Linear Discriminant 

Analysis (LDA) и K-

Nearest Neighbors 

(KNN). Параметры 

обработки: 
"скользящее окно 

анализа длиной 150 

мс с шагом  
100 мс (50 мс 

перекрытие)". 

Экстрагированы два 

набора признаков:  
1) Четыре 

временных 

признака (TD) 
[Hudgins et al., 

1993]: среднее 

абсолютное 

значение (MAV), 
количество 

пересечений нуля 

(ZC), количество 
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Parameters  

and architecture  
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изменений знака 

наклона (SSC), 

длина волны (WL). 
2) Шестипорядковая 

авторегрессионная 

модель (AR) 
[Graupe, Cline, 1975] 

и корень 

среднеквадратичног
о значения (RMS). 

Performance 

Evaluation of 

Convolutional 
Neural Network for 

Hand Gesture 

Recognition Using 
EMG, 2020 [Asif et 

al., 2020] 

sEMG 

(электромиография) 

10 жестов: 

открытая ладонь, 

закрытая ладонь, 
сгибание 

запястья, 

разгибание 
запястья, 

пронация 

предплечья, 

супинация 
предплечья, 

захват предмета 

перпендикулярно 
предплечью, 

тонкий захват, 

указательный 

палец вытянут, 
большой палец 

вверх 

Массивы 

размером  

6 × 1200 были 
получены, 

где 6 – 

количество 
каналов, 

а 1200 – 

количество 

выборок в 
каждом окне 

150 мс  

(8000 Гц × 
0,15с) 

Архитектура сети: 

15 слоев, 

3 свёрточных слоя 
(16, 64, 32 фильтра 

3×3), 3 слоя 

нормализации,  
2 слоя пулинга 

(2×2 и 3×3), 3 слоя 

ReLU, 

полносвязный 
слой, SoftMax-

классификатор, 

выходной слой. 
Алгоритм 

обучения: 

стохастический 

градиентный спуск 
с моментом 

(SGDM). 

Гиперпараметры: 
диапазон 

скоростей 

обучения (0.00001, 
0.0001, 0.001, 0.01, 

0.1), число эпох 

(20, 40, 60, 80, 

100), размер мини-
пакета – 128. 

Cross-Domain MLP 

and CNN Transfer 
Learning for 

Biological Signal 

Processing: EEG 

and EMG, 2020 
[Bird et al., 2020a] 

EMG Кулак 

сжат/разжат, 
пальцы 

разведены/сжаты, 

взмах вправо, 

взмах влево 

EMG:  

60 сек. ×  
4 жеста ×  

2 руки ×  

10 участников 

CNN: (слой, 

выходной размер, 
параметры): 

Conv2D (ReLU), (0, 

14, 14, 32), 320; 

Conv2D (ReLU), (0, 
12, 12, 64), 18496; 

Max Pooling, (0, 6, 

6, 64), 0; Dropout 
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(0.25), (0, 6, 6, 64), 

0; Flatten, (0, 2304), 

0; Dense (ReLU),  
(0, 512), 1180160; 

Dropout (0.5), (0, 

512), 0; Dense 
(Softmax), (0, 3 или 

4), 1539 [Ashford et 

al., 2019]. 
Оптимизатор: 

Adam; функция 

потерь: Кросс-

энтропия; 
количество эпох: 

до 100; dropout: 

0.25 после 
сверточных слоев, 

0.5 перед входным 

слоем. 

MLP: на основе 
алгоритма Devo 

[Bird et al., 2019b] 

была составлена 
топология:  

5 скрытых слоёв 

(206, 226, 298, 167, 
363 нейронов), 

функция активации 

– ReLU (для 

скрытых слоев), 
выходной слой – 

Softmax (для 

классификации). 
Оптимизатор: 

Adam; функция 

потерь: Кросс-
энтропия; 

количество эпох: 

100 для 

эволюционного 
поиска топологии; 

кросс-валидация: 

10-fold 
(перемешивание 

данных перед 

обучением). 
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Electromyogram-

Based Classification 

of Hand and Finger 
Gestures Using 

Artificial Neural 

Networks, 2021  
[Lee et al., 2021] 

ЭМГ-сигналы  

(3 канала),  

6 временных 
признаков на канал 

10 жестов:  

2 жеста всей 

рукой (камень, 
бумага), 7 жестов 

отдельными 

пальцами 
(ножницы, один, 

три, четыре, 

хорошо, окей, 
пистолет), 

состояние покоя 

Использованы 

5-секундные 

записи для 
каждого 

жеста,  

5 повторений 
в сете,  

4 раунда для 

каждого 
жеста, 90 % 

перекрытие 

окон (250 мс, 

шаг 25 мс) 

Искусственная 

нейронная сеть 

(ANN): количество 
скрытых слоев  

(2, 3 и 4), нейроны 

в каждом слое 
(300, 600 и 1000), 

уровень dropout 

(0.2 и 0.3), 
использование 

batch normalization 

Метод опорных 

векторов (SVM): 
ядро (linear и rbf), 

C (1, 10, 100 и 

1000), gamma  

(1, 0.1, 0.01, 0.001 
и 0.0001) 

Случайный лес 

(RF): количество 
деревьев (100, 500, 

1000) и вес классов 

balanced subsample 

и none 

Логистическая 

регрессия (LR): 
штраф (L1, L2, 
elasticnet и none),  

C (1, 0.1, 0.01, 

0.001 и 0.0001), вес 
классов (balanced  

и none), решатель 

(lbfgs и saga) 

EMGHandNet:  
A Hybrid CNN and 

Bi-LSTM 

Architecture for 
Hand Activity 

Classification Using 

Surface EMG 

Signals, 2022 
[Karnam et al., 

2022] 

sEMG-сигналы 
(NinaPro DB1 

[Atzori et al., 2014]) 

Упражнение «A» 

включает 

сгибание и 

разгибание 

отдельных 

пальцев, 

упражнение «B» 

включает 

множественные 

сгибания и 

разгибания 

пальцев, а также 

движения 

запястья, 

Общее 
количество 

паттернов 

14040 

EMGHandNet 

(предложенная 

модель): 
реализована со 
следующими 

параметрами: 

Kernel initializer: 

he_normal; strides: 
2; Kernel 

regularizer: 10-4 ; 

скорость обучения 
(l1) = 10-3; batch 

size = 16; optimizer: 

Adam b1 (0.9), 



                                                                                      Экономика. Информатика. 2025. Т. 52, № 4 (897–927)  
                                                                 Economics. Information technologies. 2025. V. 52, No. 4 (897–927)  
 

910 

Название и год 

исследования / 
Name and year  

of the research 

Тип данных  

в датасете / Type  

of data in the dataset 

Жесты / Gestures 

Оценка 

объема 

данных  

в датасете / 
Estimating 

the amount  

of data  
in a dataset 

Параметры  

и архитектура 

решений / 
Parameters  

and architecture  

of solutions 

упражнение «C» 

включает захват 

бытовых 

предметов. 

Adam b2 (0.999); 

функции 

активации: Tanh, 
Relu; dropout: 

0.2093; epochs: 

200; Bi-LSTM: 
cells = 200 

MsCNN: 
параметры 
использованы из 

исследования [Wei 

et al., 2019] 

EvCNN: 
параметры 

использованы из 

исследования 
[Olsson et al., 2020] 

CNNLM: 
параметры 

использованы из 
исследования 

[Chen et al., 2021] 

sEMG-сигналы 
(NinaPro DB2 

[Atzori et al., 2014]) 

49 классов 

действий, 

объединённых в 

упражнения B, C 

и D. Упражнения 

B и C аналогичны 

NinaPro DB1. 

Упражнение D 

включает 

9 паттернов силы, 

полученных  

при нажатии 

пальцами на 
датчики силы. 

Общее 
количество 

паттернов 

11760 

sEMG-сигналы 
(NinaPro DB4 

[Pizzolato et al., 

2017]) 

Действия рук 
аналогичны 

NinaPro DB1, но 

данные записаны 
с более высокой 

частотой 
дискретизации. 

Общее 
количество 

паттернов 

3120 

sEMG-сигналы 

(BioPatRec DB2 
[Ortiz-Catalan et al., 

2013]) 

Включает  

6 основных 

движений руки 

(открытие/ 

закрытие, 

пронация/ 

супинация, 

сгибание/ 

разгибание 

запястья) и  

20 комбинаций 

этих движений. 

Общее 

количество 
паттернов 

1326 

sEMG-сигналы 

(UCI Gesture [Lobov 

et al., 2018]) 

7 основных 

движений: сжатие 

кулака, сгибание/ 

разгибание 

запястья, 

радиальное/ульна

рное отклонение 

запястья, 

Общее 

количество 

паттернов 
864 
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раскрытая 

ладонь, состояние 

покоя. 

EMG-Driven Hand 

Model Based on the 
Classification of 

Individual Finger 

Movement, 2019 
[Arteaga et al., 

2019] 

EMG-сигналы 6 жестов: 5 

индивидуальных 
сгибаний/ 

разгибаний 

пальцев и 1 жест 
закрытия руки 

2400 

событий 
(400 на 

жест) 

k-NN: число 

соседей: Fine (1), 
Medium (10); 

метрики 

расстояния: 
Euclidean, Cosine, 

Weighted, Cubic 

Design of a Flexible 

Wearable Smart 
sEMG Recorder 

Integrated Gradient 

Boosting Decision 
Tree Based Hand 

Gesture 

Recognition, 2019 

[Song et al., 2019] 

sEMG сигналы  

с 16 каналов 

12 жестов 

(включая 
комбинации 

движений 

пальцев и жесты 
с участием 

запястья) 

Каждый 

участник 
выполнил  

12 жестов по 

10 раз, 
каждый 

жест длился 

5 секунд 

(частота 
дискретизац

ии 500 S/s) 

Gradient Boosting 

Decision Tree 
(GBDT) [Friedman, 

2001]: 

максимальная 
глубина дерева: 5, 

количество 

деревьев для 

каждого жеста: 80, 
общее количество 

деревьев: 12 × 80 = 

960, обучение с 
использованием 

библиотеки 

XGBoost [Chen, 

Guestrin, 2016], 
кросс-валидация: 

70 % данных для 

обучения, 30 % для 
тестирования, 

использованы 

временные 
признаки  

(9 признаков на 

канал, всего  

144 признака) 

Recognition of Hand 

Gestures Based on 

EMG Signals with 
Deep and Double-

Deep Q-Networks, 

2023 [Valdivieso et 

al., 2023] 

EMG-сигналы fist, wave in, open, 

wave out, pinch, 

relax (no gesture) 
[Benalcázar et al., 

2020] 

183,600  

(300 на 

пользователя) 

DQN [Vásconez et 

al., 2022]: 

архитектура:  
40-50-50-6 

нейронов (вход-

скрытые-выход), 

скорость обучения: 
0.0003, буфер 

опыта: 1×10⁶, 

размер батча: 64, 
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Название и год 

исследования / 
Name and year  

of the research 

Тип данных  

в датасете / Type  

of data in the dataset 

Жесты / Gestures 

Оценка 

объема 

данных  

в датасете / 
Estimating 

the amount  

of data  
in a dataset 

Параметры  

и архитектура 

решений / 
Parameters  

and architecture  

of solutions 

оптимизатор: 

Adam, γ: 0.99 

DQN-LSTM: 
архитектура:  

40-50-50-6 и LSTM 

(27 нейронов),  
α: 0.00009, Dropout 

в LSTM 

Fully Embedded 

Myoelectric Control 
for a Wearable 

Robotic Hand 

Orthosis, 2017 
[Ryser et al., 2017] 

EMG-сигналы с 

Myo armband 

rest, close, open, 

precision pinch, 
key pinch 

5 жестов, 

удерживались 
по 60 секунд 

(здоровые); 

3 жеста (rest, 
close, open), 

удерживались 

по 60 секунд 
(пациенты) 

SVM с RBF-ядром 
[Englehart, Hudgins, 
2003]: тип ядра: 

радиальное 

базисное (RBF), 
оптимизация γ и  

C методом grid 

search, длина окна 
обработки: 300 мс 

(офлайн), 150 мс 

(онлайн), шаг 

сдвига окна: 20 мс, 
нормализация  

по максимальному 

мышечному 
сокращению (MVC) 

Real-Time Surface 

EMG Pattern 

Recognition for 
Hand Gestures 

Based on an 

Artificial Neural 
Network, 2019 

[Zhang et al., 2019] 

sEMG-сигналы Fist, Wave In, 

Wave Out, Fingers 

Spread, Double 
Tap 

5 повторений 

× 5 жестов × 

2 секунды 
(тренировка), 

30 

повторений 
× 5 жестов × 

5 секунд 

(тест) 

Искусственная 

нейронная сеть 

(ANN): трехслойная 
сеть: входной слой, 

скрытый слой 

(число узлов = 
половина длины 

вектора признаков), 

выходной слой  

(6 узлов), функция 
активации: 

сигмоида, метод 

обучения: полный 
пакетный 

градиентный спуск, 

функция потерь: 
кросс-энтропия, 

скользящее окно: 

размер окна:  

400 мс, шаг окна:  
5 мс (1 точка), порог 

активации: 40. 
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Большинство исследований используют собранные авторами EMG-сигналы (82 %), это 

может подчёркивать: 

– важность контроля параметров (частота дискретизации, тип электродов); 

– узкую направленность задач (например, реабилитация или специфичные жесты). 

Публичные наборы данных используются в 18 % работ, это может показывать, что: 

– готовые наборы данных применяются в фундаментальных работах для сравнения 

алгоритмов; 

– чаще встречаются в исследованиях с большим количеством участников или жестов; 

– исследования методов и моделей машинного обучения проще сравнить с другими 

методами и моделями, так как набор данных одинаковый. 

Среди исследований, где использовались наборы данных из открытого доступа, 

наиболее распространёнными являются NinaPro (особенно DB1 и DB2). Это может быть 

связано с их доступностью, разнообразием жестов и большим количеством участников.  

В исследованиях используются как простые жесты (например, сжатие кулака), так и сложные 

комбинации движений пальцев и запястья.   

Касательно используемых методов стоит отметить, что в рамках данной комбинации 

исследований свёрточные нейронные сети (CNN) используются в 8 из 17 исследований (47 %), 

присутствуют также и объединение CNN с другими слоями (LSTM, механизмы внимания) для 

улучшения классификации временных последовательностей. В 6 исследованиях (35 %) 

используются и другие нейросетевые модели (MLP, ANN, DQN). Традиционные методы 

машинного обучения (SVM, KNN, LDA, RF) встречаются в 9 исследованиях (53 %), в 

некоторых исследованиях используются как нейросетевые методы, так и классические.  

В статьях присутствует описание элементов использованных методов, анализ 

параметров, гиперпараметров и архитектуры решений может помочь определить, какие 

настройки метода дают преимущество в определенных задачах. А это, в свою очередь, может 

способствовать изучению отдельных элементов метода и, при необходимости, 

воспроизведению эксперимента.  

Часто используемыми гиперпараметрами и настройками являются: оптимизаторы – 

Adam (5 исследований) и SGD (3 исследования); функции активации – ReLU (доминирует в 

CNN и MLP),  Softmax – для классификации и сигмоида – для бинарных задач; регуляризация – 

Dropout 0.2 – 0.7. Обработка сигналов и признаки: оконная обработка имеет параметры: длины 

окна 150–400 мс, перекрытия 50–100 мс, признаки – временные (MAV, RMS, ZC, SSC, WL) в 

2 исследованиях, либо без выделения признаков, нормализация сигналов ЭМГ выполнялась 

по максимальному добровольному сокращению (MVC), методом Z-нормализации, либо 

использовались сырые данные. 

В табл. 2 представлены результаты средней точности моделей и их краткая 

характеристика. 

Поскольку в исследованиях в основном используются разные наборы данных 
(собранные вручную и находящиеся в открытом доступе), прямое сравнение точности моделей 
затруднительно без учета контекста. На рис. 1 представлена общая тенденция методов.  
Из-за недостаточности тестовых данных таких методов, как деревья решений, случайный лес, 
линейный дискриминантный анализ, линейная регрессия, наивный байесовский 
классификатор их точность была объединена.  

У нейросетевых методов наибольшая медианная точность (87,37 %) среди всех методов, 
что говорит об их высокой эффективности в среднем. KNN и SVM могут достигать точности, 
близкой к нейросетям, но их результаты менее стабильны. Градиентный бустинг – 
стабильный, но не всегда точный метод, узкий разброс может говорить о том, что градиентный 
бустинг менее чувствителен к вариациям данных, но и редко достигает высоких точностей. 
Другие методы имеют самую низкую медианную точность (78,13 %), а также большой 
разброс, данные методы хуже подходят для ЭМГ-сигналов. 
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Таблица 2 

Table 2 

Точность и краткая характеристика методов 

Accuracy and brief description of methods 

Название 

исследования /  

Name of the research 

Точность, 

указанная  

в исследованиях / 

Accuracy indicated  
in the research 

Краткая характеристика / Brief description 

An Improved 

Performance of Deep 
Learning Based on 

Convolution Neural 

Network to Classify the 

Hand Motion by 
Evaluating Hyper 

Parameter 

CNN: 86,3 % Прямая обработка сырых EMG-сигналов без 

извлечения признаков, высокая точность 
классификации, возможность использования одного 

канала (CH2) без значительной потери точности, но 

большие вычислительные затраты на обучение (56.3 

секунды для 100 фильтров) и длительное время 
обработки одного сегмента: 250.6 мкс. 

KNN: 60,4 % Быстрое вычисление (до 50 мкс для одного 

сегмента), простота реализации, но требуется 
выделение признаков, ниже точность, плохая 

классификация некоторых жестов. 

SVM: 50,7 % Средняя скорость обработки, хорошая точность для 

некоторых жестов, но общая точность является 
низкой 

LDA: 49,9 % 

 

Быстрая обработка, хорошая точность для 

комбинированных признаков, но имеет самую 

низкую общую точность среди всех методов и 
неспособность классифицировать некоторые жесты 

A Novel Attention-

Based Hybrid CNN-
RNN Architecture for 

sEMG-Based Gesture 

Recognition 

CNN-RNN: 

87,0 % (NinaPro 
DB1), 

82,2 % (NinaPro 

DB2), 

94,1 % 
(BioPatRec26MOV), 

99,7 % (CapgMyo-

DBa), 
94,5 % (csl-hdemg) 

Гибридная архитектура CNN-RNN объединяет 

пространственную и временную информацию, а 
механизм внимания улучшает фокусировку на 

значимых частях сигнала. Недостатки: 

вычислительная сложность и требование тонкой 

настройки параметров. 

Анализ эффективности 

методов машинного 

обучения в задаче 
распознавания жестов 

на основе данных 

электромиографических 
сигналов / Analysis of 

the Effectiveness of 

Machine Learning 
Methods in the Problem 

of Gesture Recognition 

Based on the Data 

of Electromyographic 
Signals 

НБК: 73,58 % 

 

Из преимуществ можно выделить низкую 

временную сложность, малое время работы и 

возможность использования с данными большого 
объема. Недостатками являются низкая точность и 

не постоянное выполнение предположения о 

независимости признаков. 

Метод / 

k-ближайших 

соседей (kNN): 

80,73 % 
 

Обладает высокой точностью, но имеет 

значительную временную сложность 

Метод опорных 

векторов: 75,92 % 

Эффективен для пространств высокой размерности, 

но долго обучается (для больших наборов данных) 

Градиентный 
бустинг: 80,32 % 

Высокий баланс между точностью и скоростью, но 
требует больше вычислительных ресурсов и 

детальной настройки гиперпараметров 
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Название 

исследования /  

Name of the research 

Точность, 

указанная  

в исследованиях / 

Accuracy indicated  
in the research 

Краткая характеристика / Brief description 

Дерево решений: 

79,12 % 

Простота интерпретации и хорошая скорость, но 

уступает в точности и имеет нестабильность 
предсказаний 

Случайный лес: 

81,19 % 

Более высокая точность, но присутствует временная 

сложность 

Ансамбль НБК  

и градиентного 
бустинга: 81,55 % 

Лучшая точность среди всех методов в 

исследовании. Требует больше времени для 
классификации, чем другие методы. 

Ансамбль (НБК, 

дерево решений): 

80,60 % 

Компенсация ошибок базовых методов, среднее 

время работы 

Ансамбль 

(градиентный 

бустинг, дерево 
решений): 

79,56 % 

Улучшение точности относительно базовых 

методов, но более высокая сложность и время 

работы 

ConTraNet: A Hybrid 

Network for Improving 
the Classification of 

EEG and EMG Signals 

with Limited Training 
Data 

ConTraNet (BCI 

Comp. IV,  
2-классовый  

MI-EEG): 83,61 % 

Хорошая обобщающая способность. Надежное 

извлечение признаков из EEG. Немного снижает 
точность на ограниченных данных. 

ConTraNet (sEMG, 
10-классовый 

Mendeley Data): 

77,15 % 

Значительное улучшение по сравнению  
с CNN-LSTM. Хорошо справляется с шумными 

sEMG-данными. 

EEGNet  
(2-классовый  

MI-EEG) [Lawhern 

et al., 2018]: 

81,81 % 

Компактная архитектура, но проигрывает на 
сложных задачах. 

ShallowNet  

(2-классовый  

MI-EEG) 
[Schirrmeister et 

al., 2017]: 78,73 % 

Простая архитектура, испытывает трудности с 

большим числом классов. 

CNN-LSTM1,32  

(2-классовый  
MI-EEG): 64,31 % 

Плохо обобщается, уступает другим методам. 

Вероятно, LSTM неэффективен для этой задачи 

CNN-LSTM1,32  

(3-классовый  

MI-EEG): 46,61 % 

Низкая точность. Не справляется с увеличением 

сложности задачи. 

CNN-LSTM1,32  

(4-классовый  

MI-EEG): 34,50 % 

Низкая точность. 

CNN-LSTM1,32 

(10-классовый 

sEMG): 23,55 % 

Крайне низкая точность для sEMG, не годится для 

практического применения. 

CNN-LSTM1,32  
(7-классовый 

sEMG V1, 6 сек): 

39,93 % 

Точность лучше, чем у двух предыдущих моделей, 
но остается низкой, относительно других моделей. 
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Название 

исследования /  

Name of the research 

Точность, 

указанная  

в исследованиях / 

Accuracy indicated  
in the research 

Краткая характеристика / Brief description 

CNN-LSTM1,32  

(7-классовый 
sEMG V1, 4 сек): 

43,69 % 

Точность немного лучше на коротких сигналах, но 

уступает другим методам. 

Classification of 

Electromyographic 
Hand Gesture Signals 

Using Machine Learning 

Techniques 

CAE+CNN: 

99,38 % 

Высокая точность в случаях (c) и (d), устойчива к 

шуму, но требует большого количества данных, 
имеет довольно низкую точность в случаях (a) и (b). 

CNN: 95,00 % Имеет преимущество при обработке 

высокоразмерных данных, но удовлетворительную 

производительность и низкую точность в некоторых 
случаях (в исследовании в случае (a) и (b)). 

Нейронная сеть 

(NN): 86,88 % 

Высокая точность в случаях (a), (c), (d), хорошая 

устойчивость, но требует большого количества 
оперативной памяти для обучения и имеет низкий 

уровень точности в случае (b). 

K-ближайших 

соседей (KNN): 

38,42 % 

Показал высокую точность в случаях (a) и (c), но 

крайне низкую точность в случаях (b) и (d). 

Метод случайного 

леса (Random 

Forest): 78,13 % 

Хорошая точность в случаях (a), (c), (d), но низкая 

точность в случае (b). 

Решающее дерево 

(Decision Tree): 

84,00 % 

Быстрая интерпретируемая модель, показала 

высокую точность в случаях (a), (c), (d), но крайне 

низкую точность в случае (b). 

Метод опорных 
векторов (SVM): 

16,25 % 

Показал хорошую точность в случае (c), но крайне 
низкую точность в случаях (b) и (d). 

Логистическая 
регрессия: 

23,12 % 

Плохо подходит для сложных задач, не справляется 
с нелинейными зависимостями, показала плохую 

точность во всех случаях. 

Наивный байес 

(Naive Bayes): 

17,50 % 

Очень низкая точность во всех случаях. 

Classification of EMG 

Signals Using 

Convolution Neural 
Network 

CNN1 (Raw 

Signal): 90,62 % 

[Sapsanis et al., 
2013] 

Приемлемая точность даже без предобработки. 

CNN2 (FFT): 

67,30 % 

Низкая точность, метод не подходит для таких 

задач. 

CNN3 (RMS): 

88,59 % 

Хорошие результаты точности, но хуже, чем у 

CNN4. 

CNN4 (EMD): 

95,90 % 

Лучший результат, позволяет выделить значимые 

компоненты сигнала, что улучшает классификацию. 

Intra Subject Approach 

for Gait Event 

Prediction by Neural 

Network Interpretation 
of EMG Signals 

NN: 96,1 % Из преимуществ можно выделить: высокую 

точность, сниженную ошибку (MAE) при 

прогнозировании событий HS и TO. 

Недостатки выражаются в требовании 
персонализированного обучения модели для 

каждого нового пациента и высокой 

вычислительной сложности. 
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Название 

исследования /  

Name of the research 

Точность, 

указанная  

в исследованиях / 

Accuracy indicated  
in the research 

Краткая характеристика / Brief description 

A Novel Channel 

Selection Method for 
Multiple Motion 

Classification Using 

High-Density 

Electromyography 

Linear 

Discriminant 
Analysis (LDA), в 

исследовании 

точное значение 

не указано, но 
исходя из 

представленных 

графиков: 

91,5 %  

(18 монополярных 

ЭМГ-каналов) 

93,3 %  

(18 биполярных  

ЭМГ-каналов) 

Преимущества заключаются в простоте алгоритма и 

низкой вычислительной стоимости [Englehart et al., 
1999], но метод имеет зависимость от признаков. 

K-Nearest 
Neighbors (KNN): 

93,03 %  

(18 монополярных 
ЭМГ-каналов) 

94,50 %  

(56 монополярных 

ЭМГ-каналов) 

95,58 %  

(18 биполярных  

ЭМГ-каналов) 

98,17 %  

(45 биполярных  

ЭМГ-каналов) 

Присутствует толерантность к произвольному 
распределению данных [Nazarpour et al., 2007], но 

модель имеет высокую вычислительную сложность.  

 

Performance Evaluation 
of Convolutional Neural 

Network for Hand 

Gesture Recognition 
Using EMG 

CNN: 92 % Результаты показали, что скорость обучения 0.001 с 
100 эпохами значительно превосходила (p < 0.05) 

другие параметры, относительно результатов 

точности. В результате исследования модель 
показала высокую точность. Из недостатков можно 

выделить высокую вычислительную сложность. 

Cross-Domain MLP and 

CNN Transfer Learning 
for Biological Signal 

Processing: EEG and 

EMG 

MLP (Random  

Init – EMG): 

84,76 % 

Хорошая базовая точность для классификации 

жестов EMG, но требуется ручная обработка 
признаков и ресурсоемкий поиск топологии через 

алгоритм DEvo. 

CNN (Random  

Init – EMG): 

88,55 % 

Наивысшая точность среди всех моделей и 

эффективная работа с 2D-представлением сигналов, 
но требуется преобразование сигналов в 

изображения. 

ResNet50 
(ImageNet Init) [He 

et al., 2016]: 

74,92 % 

Наименьшая точность среди всех моделей и плохая 
адаптация к EMG-данным. 

Electromyogram-Based 
Classification of Hand 

and Finger Gestures 

ANN: 94 % Лучшая точность среди использованных в 

исследовании методов, устойчивость к 

индивидуальным различиям в ЭМГ-сигналах, 
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Using Artificial Neural 

Networks 

эффективность даже с малым числом каналов и 

только временными признаками. Но присутствует 

высокая вычислительная сложность (2000 эпох, 

большой размер сети), требование тщательного 

подбора гиперпараметров. 

SVM: 87,6 % Хорошая обобщающая способность на данном 

наборе данных и эффективность на малых выборках, 

но требует ручного подбора ядра и параметров. 

RF: 83,1 % Средняя точность, подходит для задач с большим 

количеством признаков. Из недостатков можно 

выделить более низкую точность, чем у ANN и SVM 

и более высокую дисперсию, чем у ANN. 

LR: 53,9 % Из преимуществ можно выделить простоту 

алгоритма, а также быстрое обучение. Недостатки 

выражены в довольно низкой точности, плохой 

работе с нелинейными зависимостями в данных. 

EMGHandNet:  

A Hybrid CNN and  

Bi-LSTM Architecture 
for Hand Activity 

Classification Using 

Surface EMG Signals 

EMGHandNet: 

NinaPro DB1: 

95,77 % 

NinaPro DB2: 

95,9 % 

NinaPro DB4: 

91,65 % 

UCI Gesture: 

98,33 % 

BioPatRec DB2: 

91,29 % 

Гибридная архитектура CNN и Bi-LSTM позволяет 

извлекать кросс-канальные и временные признаки. 

Поддерживает end-to-end обучение. 
Двунаправленный LSTM улучшает понимание 

динамики жеста. Но имеет высокую 

вычислительную сложность и нуждается в 
перенастройке под отдельные наборы данных. 

MsCNN [Wei et 

al., 2019]: 

NinaPro DB1: 

74,25 % 

NinaPro DB2: 

50,99 % 

NinaPro DB4: 

34,1 % 

UCI Gesture: 

95,58 % 
BioPatRec DB2: 

66,18 % 

Показал наихудшую производительность среди 

сравниваемых методов в данном исследовании 

EvCNN [Olsson et 

al., 2020]: 

NinaPro DB1: 

68,06 % 

NinaPro DB2: 

80,54 % 

NinaPro DB4: 

22,3 % 

Метод имеет автоматическую генерацию топологии 

CNN, имеет низкую вычислительную сложность, но 
уступает в точности и не оптимизирован для 

долгосрочных временных зависимостей. 
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UCI Gesture: 

45,55 % 

BioPatRec DB2: 

84,19 % 

CNNLM [Chen et 

al., 2021]: 
NinaPro DB1: 

92,99 % 
NinaPro DB2: 

87,17 % 
NinaPro DB4: 

87,37 % 
UCI Gesture: 

86,51 % 
BioPatRec DB2: 

89,17 % 

Близка к EMGHandNet по точности, но всё же 

уступает. Существует риск потери временной 
информации из-за плотных слоев. Имеет 

ограниченную способность к двунаправленному 

анализу. 

EMG-Driven Hand 
Model Based on the 

Classification of 

Individual Finger 
Movements 

Fine и Weighted  
k-NN: 98 % 

Имеет высокую точность для всех жестов.  
Но чувствителен к выбору метрики и расстояния, а 

также числа соседей. 

Design of a Flexible 

Wearable Smart sEMG 

Recorder Integrated 
Gradient Boosting 

Decision Tree Based 

Hand Gesture 
Recognition 

GBDT: 91 % Из преимуществ можно выделить: низкую задержку 

благодаря параллельной реализации GBDT на FPGA 

и хорошую точность для 12 жестов, низкую 
зависимость от выбора признаков, отсутствие 

необходимости в сложных вычислениях, но 

существует сложность аппаратной реализации. 

Recognition of Hand 

Gestures Based on EMG 

Signals with Deep and 
Double-Deep  

Q-Networks 

DQN (без LSTM): 

90,37 % 
(классификация), 

82,52 % 
(распознавание) 

Имеет лучшую точность в исследовании и подходит 

для онлайн-обучения, но присутствует зависимость 

от тщательной настройки гиперпараметров и 
ограниченная интерпретируемость. 

DQN-LSTM: 

51,6 % 
(классификация), 

26,6 % 
(распознавание) 

Теоретически лучше для временных данных, но 

имеет крайне низкую точность в данном случае. 

Fully Embedded 

Myoelectric Control for 

a Wearable Robotic 

Hand Orthosis 

SVM (автономно, 

5 жестов): 98,0 % 

Высокая точность для 5 жестов и подходит для 

жестов, записанных вручную, но сильно зависит от 

качества тренировочных данных 

SVM (онлайн, 

3 жеста): 94,3 % 

Работает в реальном времени и интегрирован в 

портативную систему, но имеет задержку в 600 мс и 

ложные срабатывания (2.3–3.3 % для rest/open) 

Real-Time Surface 
EMG Pattern 

Recognition for Hand 

Gestures Based on an 

ANN (модель, 
разработанная в 

исследовании): 

98,7 % 

Высокая точность распознавания, реальное время 
отклика (227.76 мс), возможность распознавания до 

завершения жеста, но имеется зависимость от 

размера скользящего окна и порога активации. 
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Artificial Neural 

Network 

ANN [He et al., 

2016]: 90,7 %. 

Простота архитектуры, но точность ниже и не 

учитывается отклик в реальном времени 

k-NN [He et al., 
2016]: 90,54 %. 

Время отклика в исследовании не измерялось или не 
удовлетворяет требованиям к реальному времени. 

SVM [Motoche, 
Benalcázar, 2018]: 

93,99 %. 

SVM имеет лучшую точность, чем k-NN, но все еще 

уступает ANN. В исследовании этот метод  
не рассматривается как подходящий для реального 

времени. 

 

 

Рис. 1. Общая тенденция точности методов  

Fig. 1. General trend of method accuracy 

 

Также для определения точности моделей возможно использовать сравнение их 

результатов на открытых наборах данных, если такие проверки проводились в исследованиях. 

На рис. 2 изображены значения средней точности методов, если на одном наборе данных 

проверялось минимум 2 метода.  

Модели, сочетающие CNN и RNN/Bi-LSTM, имеют преимущество в точности и 

стабильности в исследовании на открытых наборах данных. CNNLM, хотя и уступает гибридным 

методам, но имеет баланс между точностью и простотой. Простые архитектуры (MsCNN, EvCNN) 

показывают нестабильность и проявляют сильную зависимость результатов от наборов данных. 

ConTraNet демонстрирует хорошую обобщающую способность, но необходимо тестирование на 

большем количестве наборов данных. 
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Рис. 2. Средняя точность методов на открытых наборах данных ЭМГ-сигналов  

Fig. 2. Average accuracy of the methods on open datasets of EMG signals 

Заключение 

Развитие современных протезов конечностей все чаще связано с внедрением 

интеллектуальных систем управления, в частности основанных на ЭМГ-сигналах и методах 

машинного обучения для их обработки. В ходе анализа существующих исследований и 

сравнительной оценки методов можно сделать ряд выводов.  

Во-первых, современные нейросетевые архитектуры демонстрируют более высокую 

точность по сравнению с классическими методами (SVM, LDA, RF, DT, LR, NB), однако для 

более детального сравнения отсутствует достаточное количество тестовых данных. 

Во-вторых, несмотря на успехи нейросетевого подхода, эффективность моделей во 

многом зависит от используемого набора данных. Некоторые методы (например, ConTraNet 

или CNN-RNN) показали хорошие результаты, но тестировались только на двух наборах 

данных, что ограничивает анализ их точности. Это подчёркивает необходимость 

стандартизации экспериментов и более широкого тестирования на разнообразных данных. 

В-третьих, эффективное использование ЭМГ-датчиков и качественная предварительная 

обработка сигналов остаются критически важными элементами успешной работы системы. 

Это может проявляться в сильном разбросе значений точности по различным наборам данных 

из открытого доступа. 

В данной статье были рассмотрены основные типы используемых протезов и их 

характеристики. Изучены исследования, применяющие технологии машинного обучения для 

обработки ЭМГ-сигнала, наборы данных, параметры и гиперпараметры используемых 

методов, а также точность каждого метода. В целом, анализ показывает, что применение 

методов машинного обучения, особенно нейросетевых моделей, открывает новые горизонты 

в создании более точных, адаптивных и «интуитивных» протезов. Однако для дальнейшего 

прогресса необходимо сосредоточиться на решении проблем универсализации моделей и 

наборов данных, более широком использовании моделей на открытых наборах данных, 

улучшении качества самих данных и интеграции систем в реальные условия использования. 
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