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Аннотация. В настоящее время методы и алгоритмы глубокого обучения начинают активно 

использоваться в медицинской сфере. Одной из задач, в которых нейронные сети добиваются хороших 
результатов, является диагностика. В данной работе рассмотрены современные исследования в области 

распознавания рака молочной железы по изображениям ультразвукового исследования, как наиболее 

распространенного благодаря своей неинвазивности. Анализ включает работы за последние пять лет в 

данной области. Также в работе представлены соображения авторов по разработке нового алгоритма 
глубокого обучения для распознавания рака молочной железы по изображениям ультразвукового 

исследования, основанного на использовании парных функций потерь при построении сети. 
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Abstract. Deep learning methods and algorithms are currently being actively used in the medical field. One 

of the tasks in which neural networks achieve good results is diagnostics. The use of systems incorporating 
deep learning algorithms for diagnostic studies is particularly beneficial in situations where there is a shortage 

of medical personnel, particularly highly qualified specialists. This article examines current research in the 

field of breast cancer recognition from ultrasound images, the most common method due to its non-invasive 
nature. The analysis includes studies from the past five years in this field. The paper also presents the authors' 

considerations for developing a new deep learning algorithm for breast cancer recognition from ultrasound 

images, based on the use of a pair of loss functions in network construction. Advances in ultrasound technology 

have made it possible to obtain higher-quality and more informative images, improving the accuracy of 
malignant tumor diagnosis using deep learning techniques. 
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Введение 

Ультразвуковая визуализация – важнейшая технология медицинской визуализации, 

которая по сравнению с компьютерной томографией и рентгеном обеспечивает 

портативность, простоту и отсутствие ионизирующего излучения, что делает ее идеальной для 

применения в условиях ограниченных ресурсов. 

Медицинская визуализация основана на различных физических явлениях для 

визуализации тканей человеческого тела, как внутренних, так и внешних, с помощью 

неинвазивных или инвазивных методов [Song et al., 2024]. Ключевые методы, такие как 

компьютерная томография (КТ), магнитно-резонансная томография (МРТ), рентгеновская 

радиография, ультразвук и цифровая патология, генерируют важные данные здравоохранения, 

составляющие около 90 % медицинской информации. Следовательно, медицинская 

визуализация играет жизненно важную роль в клинической оценке и медицинских 

вмешательствах [Liu et al., 2023; Zhang et al., 2025]. 

Методы визуализации, используемые при опухолях молочной железы  

Для диагностики опухолей молочной железы используются различные методы 

визуализации, основными из которых являются маммография и ультразвук. Эти методы 

визуализации обычно применяются для скрининга, а если обнаруживается опухоль, то для 

оценки поражения обычно проводят более тщательное ультразвуковое исследование и/или 

магнитно-резонансную томографию (МРТ).  

Ультразвуковое исследование используется на различных этапах контроля 

онкологических образований молочной железы, включая [Afrin et al., 2023; Chan et al., 2020]: 

– скрининг в ситуации, когда ткани молочной железы являются плотными; 

– диагностику и прогнозирование во время химиотерапии благодаря своим 

неинвазивным характеристикам, отсутствию ионизирующего излучения, портативности, 

способности проводить диагностику в режиме реального времени; 

– проведение направленной биопсии.  

В табл. 1 представлены различные методы визуализации, которые используются в 

процессе диагностики и лечения опухолей молочной железы, включая их метрики, 

оценивающие диагностическую точность:  

– чувствительность (SEN) – доля истинно положительных результатов среди всех 

действительно больных людей; 

– специфичность (SPE) – доля истинно отрицательных результатов среди всех 

действительно здоровых людей.  

Также в табл. 1 представлены преимущества и недостатки различных методов 

визуализации.  

Технология ультразвука, которая постоянно совершенствуется, включает в себя 

различные методы, такие как [Afrin et al., 2023]:  

– УЗИ с цветовым допплеровским картированием (ЦДК) – технология, которая 

позволяет получать не только традиционное черно-белое изображение внутренних органов и 

сосудов, но и цветное изображение движения крови;   

– энергетическая допплерография (Power Doppler, CFM) – вид УЗИ с доплером, 

который необходим для улавливания движения крови по самым мелким сосудам;  

– контрастное ультразвуковое исследование (контрастный ультразвук, контрастная 

эхография, контраст-усиленное УЗИ, КУУЗИ) – метод ультразвуковой диагностики с 

применением контрастных препаратов, который позволяет получить более детальное 

изображение внутренних органов и тканей.  



          Экономика. Информатика. 2025. Т. 52, № 4 (861–872)    
          Economics. Information technologies. 2025. V. 52, No. 4 (861–872)         
 

863 

– 3D-ультразвук (трёхмерное ультразвуковое исследование, 3D УЗИ) – метод 

ультразвукового исследования, позволяющий получать объёмное изображение внутренних 

органов и структур. В отличие от традиционного 2D-ультразвука, 3D-режим создаёт 

трёхмерную модель, что даёт врачу больше информации для точной диагностики; 

– автоматическое ультразвуковое исследование молочной железы (Automated Breast 

Ultrasound, ABUS) – это метод, при котором сканирование проводится автоматически с 

помощью специального датчика, создающего высокоточные 3D-изображения всей груди в 

стандартных проекциях. Используется для дополнительного скрининга молочных желёз у 

женщин с повышенной плотностью ткани; 

– эластография – метод ультразвуковой диагностики, при котором оценивается 

жёсткость (упругость) тканей организма (количественно и качественно). Часто 

используется для определения типа новообразования, его структуры и агрессивности, 

контроля доброкачественных процессов. 

Эти методы увеличивают чувствительность и специфичность традиционного 

ультразвука до максимального уровня [Iranmakani et al., 2020]. 
 

Таблица 1 

Table 1 

Методы визуализации молочной железы  

Breast imaging techniques  

№ 
Методы 

визуализации 

Медицинские 

процессы 
SEN,  % SPE,  % Достоинства Недостатки 

1 Маммография  Скрининг, 

диагностика, 

прогноз 

68,6–

83,3 

90–95 Высокая 

специфичность 

Плохой контраст и 

использование 

ионизирующего 
излучения 

2 Ультразвук Скрининг, 

диагностика, 

прогноз, 
терапия 

36–100 

 

79–92,7 Высокая 

диагностическая 

ценность, 
экономическая 

эффективность, 

неинвазивность, 
отсутствие 

радиации 

Высокие показатели 

ложноположитель-

ных результатов 

3 ПЭТ-КТ 

(позиционно-
эмиссионная 

томография) 

Диагностика, 

прогноз, 
терапия 

96 77 Высокая точность 

и чувствительность 

Использование 

ионизирующего 
излучения, высокая 

стоимость 

4 МРТ 

(магнитно-
резонансная 

томография) 

Диагностика, 

прогноз 

88,19 67,7–85 Высокое 

разрешение, 
неионизирующее 

излучение 

Высокая стоимость, 

возможность 
получить 

изображения только 

с одной стороны 

5 Неионизирую-

щее 

излучение 

Диагностика 96 93 Неинвазивность, 

малая стоимость 

Высокое 

рассеивание 

снижает 

контрастность 
изображения 

 

Основная часть 
 

Применение искусственного интеллекта в медицинской ультразвуковой диагностике 

(УЗИ) имеет давнюю историю [Wang et al., 2012]. С бурным развитием глубокого обучения 

его применение в медицине стало ещё более распространённым. 
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Глубокое обучение как краеугольный камень технологии, движущей продолжающуюся 

революцию искусственного интеллекта (ИИ), демонстрирует значительный потенциал в 

медицинской визуализации [Li, 2022]. Глубокое обучение используется в различных аспектах 

ультразвукового исследования: 

– в формировании ультразвукового луча [Mamistvalov et al., 2022; Mamistvalov, Eldar, 

2021]; 

– в клиническом применении ультразвука [Chen et al., 2021]; 

– в ультразвуковой визуализации [Van et al., 2021]. 

В данной работе рассматривается применение нейросетевых методов и алгоритмов в 
клинической диагностике с использованием ультразвукового исследования. Эмпирические 
данные доказали, что алгоритмы глубокого обучения демонстрируют качество обнаружения 

онкологических образований груди, сопоставимое с качеством распознавания, проведенного 
медицинскими работниками средней квалификации, при диагностике различных 
заболеваний на основе данных визуализации [Ohuchi et al., 2016]. А также показали лучшие 
результаты, нежели начинающие диагносты. 

Также следует отметить, что традиционные методы, используемые для обнаружения 
онкологических образований груди, легко подвержены влиянию возможного низкого 
качества изображений. В отличие от традиционных методов, глубокое обучение может 

снизить влияние низкого качества ультразвукового изображения, извлекая признаки 
высокого уровня [Luijten et al., 2022]. 

Американский колледж радиологии опубликовал рекомендации по Breast Imaging Reporting 
and Data System (BI-RADS) для скрининга на рак молочной железы, чтобы стандартизировать 

интерпретацию изображений радиологами и определить рекомендации по лечению. Несмотря на 
улучшение согласованности, остаются ограничения в виде субъективной характеристики 
визуальных находок и постоянной изменчивости при интерпретации медицинских изображений. 

Кроме того, все еще существует нехватка специалистов для предоставления своевременной 
диагностики и направления пациентов к соответствующему клиническому лечению. Машинное 
обучение используется на протяжении многих лет в компьютерной помощи в диагностике 

различных типов рака, включая рак молочной железы. 
Таким образом, использование нейросетевых методов при анализе снимков УЗИ 

является целесообразным, особенно в условиях нехватки персонала медицинских работников 
на периферии и в условиях массового скрининга населения. 

Анализ медицинского ультразвука в основном включает сегментацию, классификацию, 
регистрацию и локализацию [Liu et al., 2019; Wang et al., 2021].  

Юань Сюа и соавторы в своей работе «Сегментация изображений УЗИ молочной железы с 

помощью машинного обучения» [Xu et al., 2019] представили метод на основе свёрточных 
нейронных сетей для автоматической сегментации ультразвуковых изображений молочной 
железы на четыре основных класса: кожу, фиброгландулярную ткань, опухоль и жировую ткань. 

Архитектура предложенной ими нейронной сети представлена на рис. 1. 
Представленная нейронная сеть состоит из трех восьмислойных свёрточных нейронных 

сетей CNN-I, каждая из которых на вход получает изображение одной их трех ортогональных 
плоскостей ультразвукового изображения [Xu et al., 2019]. После прохождения последнего 

полносвязного слоя и функции Softmax данные преобразуются в массив распределения 
вероятностей с 4 выходными элементами, соответствующими четырем категориям тканей груди.  

CNN-II представляет собой меньшую сеть, которая предназначена для объединения 

выводов трех CNN-I. Обучение осуществлялось с использованием алгоритма Adam. 
В качестве данных для тренировки и тестирования сети были использованы ультразвуковые 
исследования груди в Радиологическом отделении Университета Мичигана, США (более 

20000 изображений). 
Для оценки качества работы сети авторы использовали метрики: accuracy, precision, 

recall, F1 мера, значения каждой из которых превысило 80 %. Также использовался индекс 
сходства Жаккара (JSI) для сегментации, который оказался равным 85,1 %. 
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Рис. 1. Архитектура нейронной сети 

Fig. 1. Neural network architecture 

 

В работе «Перспективная оценка риска рака молочной железы по мультимодальным 

многопроекционным ультразвуковым изображениям с помощью клинически применимого 

глубокого обучения» [Qian et al., 2021] авторами для предсказания риска онкологических 

образований молочной железы была предложена архитектура нейронной сети, представленная 

на рис. 2 [Qian et al., 2021]. 

 

 

Рис. 2. Общая система ИИ для прогнозирования риска рака груди 
Fig. 2. General AI system for predicting breast cancer risk 

 

Представленная авторами глубокая свёрточная нейронная сеть была обучена с 

использованием многомодальных УЗИ-изображений на уровне просмотра и подтверждённых 

биопсией меток. В представленной архитектуре был использован блок ResNet-18 и модуль 

SENet для извлечения информативных признаков из УЗИ снимков в B-режиме, УЗИ с 

цветовым допплеровским картированием, снимки эластографии. Полносвязный слой 

предназначен для извлечения значимых признаков для принятия решений.  
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Авторы отмечают, что использование ResNet-18 в сочетании с основой SENet показало 

наилучший результат. Сравнение осуществлялось с базовым ResNet-18, а также с другими 

распространёнными моделями, включая VGG19, ResNet-50 и Inception-v3, все из которых 

были интегрированы с блоком SENet для чистоты эксперимента. 

В представленной системе искусственного интеллекта были задействованы две модели 

глубокого обучения:  

1) бимодальная модель – в данной модели использовались входные данные с 

изображениями УЗИ в B-режиме и изображения цветного доплера;  

2) мультимодальная модель – в качестве входных данных этой модели использовались 

изображения УЗИ в B-режиме, изображения цветного доплера и эластографии.  

Авторы отмечают, что мультимодальная модель показала результаты выше по 

отношению к бимодальной модели в прогнозировании оценок BI-RADS. Также авторы 

отмечают, что оценки предложенной системы полностью согласуются с оценками опытных 

рентгенологов. 

Для обучения и тестирования разработанного решения был использован набор данных, 

состоящий из 10815 изображений, полученных из 721 поражения у 634 пациентов, прошедших 

УЗИ молочной железы в период с октября 2016 года по декабрь 2018 года. Из 721 поражения, 

использованного в исследовании, 556 были доброкачественными, а 165 – злокачественными, 

подтвержденными биопсией.  

Поражения в наборе данных были случайным образом распределены по двум группам: 

обучающей выборке (70 %) и валидационной выборке (30 %). 

Таким образом, интеллектуальная система, предложенная Сюэцзюнь Цянь, Цзин Пей и 

др., соответствует текущим стандартам BI-RADS и может быть полезна в принятии решения 

как опытным рентгенологам, так и, в особенности, начинающим специалистам. 

Работа «Глубокое обучение на основе знаний предметной области для диагностики рака 

молочной железы на основе видеозаписей УЗИ с контрастным усилением» Чэнь Чэнь и 

соавторов [Chen et al., 2021] посвящена разработке нейросетевого решения для диагностики 

рака молочной железы. Основной особенностью предлагаемого авторами решения является 

использование контрастного ультразвукового исследования. По сравнению со 

статическими изображениями УЗИ молочной железы, контрастное ультразвуковое 

исследование может предоставить более подробную информацию о кровоснабжении 

опухолей и, следовательно, помочь радиологам установить более точный диагноз.  

Второй особенностью предложенного решения является тот факт, что авторы 

используют знание того, что радиологи обычно следуют двум специфическим паттернам при 

контрастном ультразвуковом исследовании: сосредоточенность на конкретных временных 

интервалах и внимание на различиях между кадрами контрастного ультразвукового 

исследования и соответствующими изображениями УЗИ [Chen et al., 2021]. 

Архитектура предлагаемого авторами решения представлена на рис. 3. 

Представленная модель состоит из трех частей: 

1) основой модели является 3D-свёрточная нейронная сеть (C3D). Извлекает временные 

и пространственные особенности из входных данных; 

2) модуль временного внимания, основанный на знаниях из области (DKG-TAM), 

интегрирует временное внимание радиологов в модель, направляя модель сосредоточиться на 

критических временных интервалах в данных; 

3) модуль внимания каналов, основанный на знаниях из области (DKG-CAM). 

Используется для конкатенации признаков, извлеченных на основе знания радиолога, с 

признаками, извлеченными основной сетью C3D. 

В качестве набора данных авторы использовали собственный датасет, включающий 

исследование молочной железы из Онкологической больницы и института Пекинского 

объединённого медицинского колледжа, а также Китайской академии медицинских наук 

(CICAMS). Полученный набор данных был назван Breast-CEUS, который состоял из 
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221 исследования опухоли молочной железы у 217 пациентов, которые проходили 

обследование в CICAMS с марта 2019 года по ноябрь 2020 года и имели предварительный 

клинический диагноз рака груди. 

 

 

Рис. 3. Архитектура модели 

Fig. 3. Model architecture 

 
Обучение нейронной сети осуществлялось на протяжении 60 эпох. Для предотвращения 

переобучения был использован слой dropout с коэффициентом 0.1. 

Сравнение работоспособности предложенного решения осуществлялось с некоторыми 

актуальными моделями классификации изображений, такими как ResNet, ResNeXt и Inception. 

По результатам эксперимента предложенное авторами решение является более точным. 

В работе «Классификация рака молочной железы по ультразвуковым изображениям с 

использованием оптимального слияния признаков на основе вероятностного анализа» [Jabeen 

et al., 2022] авторов Киран Джабин, Мухаммад Атик Хан и др. представлено нейросетевое 

решение для классификации рака груди по снимкам УЗИ без дополнительной информации. 

Особенностью представленного авторами решения является отбор и использование лучших 

признаков для решения поставленной задачи. Архитектура нейронной сети представлена на 

рис. 4 [Jabeen et al., 2022]. 
 
 

 

Рис. 4. Структура классификации рака молочной железы  

с использованием ультразвуковых изображений 
Fig. 4. The framework for breast cancer classification using Ultrasound Images 
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Предложенное авторами решение состоит из пяти основных этапов: 

1) Аугментация данных для увеличения исходного набора снимков УЗИ и, как следствие, 

более качественного обучения нейронной сети. 

В представленной работе используется набор данных BUSI, который содержит 

780 изображений ультразвукового исследования груди и включает в себя три категории: 

133 изображения без новообразований, 210 изображений со злокачественными 

новообразованиями и 487 изображений с доброкачественными новообразованиями. 

При аугментации были использованы следующие операции: горизонтальное отражение, 

вертикальное отражение и поворот на 90 градусов. Данные операции повторялись до тех пор, 

пока объем данных не составил 12000 изображений по 4000 в каждой категории. 

2) Использование в основной архитектуре предварительно обученной модели DarkNet-53 

с модификацией выходного слоя в зависимости от классов полученного набора данных после 

модификации. 

3) Извлечение признаков из слоя глобального среднего объединения. 

4) Отбор наиболее важных признаков с использованием двух улучшенных 

оптимизационных алгоритмов:   

– Reformed Differential Evaluation (RDE), который является модификацией алгоритма 

дифференциальной эволюции и используется в контексте машинного обучения для выбора 

оптимальных признаков; 

– reformed gray wolf (RGW), который представляет собой алгоритм оптимизации, 

используемый в контексте классификации медицинских изображений, в частности 

ультразвуковых снимков груди. 

Размер вектора после выполнения алгоритма RDE составляет 4788×818. Количество 

изображений – 818, количество признаков – 4788. Размер вектора после выполнения алгоритма 

RGW составляет 4788×734. 

5) Объединение отобранных признаков путем использования нового подхода на основе 

вероятности и классификация. 

На данном этапе осуществляется объединение признаков после алгоритмов RDE и RGW. 

Объединение осуществляется в одну матрицу на основе вероятностного подхода. Таким 

образом решается проблема избыточности признаков. Размер вектора после слияния имеет 

следующую размерность: 4788×704. 

Эксперимент проводился на увеличенном наборе данных об ультразвуковых 

изображениях груди (BUSI), и лучшая точность составила 99,1 %, что является высоким 

результатом. 

В работе «DeepBreastCancerNet: новая модель глубокого обучения для диагностики рака 

молочной железы с помощью ультразвуковых изображений» [Raza et al., 2023], авторами 

которой являются Асаф Раза, Наим Уллах и др., предложена модель глубокого обучения 

DeepBraestCancerNet для обнаружения и классификации онкологических опухолей груди, 

архитектура которой представлена на рис. 5. 

Представленное решение состоит из трех основных компонентов: блок изменения 

размера изображения, блок извлечения признаков и блок классификации. 

Архитектура предложенной нейронной сети состоит из слоев двумерной свертки, 

модулей Inception, предназначенных для извлечения признаков разного размера и сложности 

за счёт параллельного применения нескольких свёрточных фильтров разных размеров и 

полносвязного выходного слоя [Raza et al., 2023]. 

В качестве функций активации используются две функции: ReLu и Leaky ReLu. Также в 

архитектуре используются пакетная нормализация и кросс-канальная нормализация для 

выполнения операции нормализации. 

Для аугментации данных использовался поворот на 30 градусов. Разделение данных на 

обучающую и тестовую выборки осуществлялось как 70 % и 30 % соответственно. 

Используемый оптимизатор – алгоритм стохастического градиентного спуска с импульсом 
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(SGDM). Нейронная сеть обучалась на протяжении 100 эпох. Набор изображений 

ультразвукового исследования, используемый для обучения и тестирования предложенной 

авторами нейронной сети, состоял из 1030 ультразвуковых изображений 

(537 доброкачественных новообразований, 360 злокачественных новообразований и 

133 снимков без новообразований). 

 

 

Рис. 5. Абстрактное представление технологии DeepBreasCancertNet 

Fig. 5. Abstract representation of DeepBreasCancertNet technology 

 
Предложенная модель DeepBraestCancerNet достигла наивысшей точности на сотой 

эпохе обучения, показав следующие результаты: accuracy=99,35 %, precision=99,60 %, 

recall=99,66 % и F1-score=99,60 %, что показывает эффективность представленного метода. 

 
Выводы и дальнейшее направление исследований 

 

По проведенному анализу представленных работ в области классификации 

онкологических новообразований в груди можно заключить, что в качестве основной 

архитектуры используется свёрточная нейронная сеть, в некоторых случаях предобученные 

модели, например, ResNet-18, VGG19, Inception-v3 и др. В качестве оптимизатора чаще всего 

используется алгоритм Adam либо стохастический градиентный спуск. В качестве функций 

активации чаще всего используются ReLU и ее модификации и Softmax. Количество эпох для 

тренировки зависит от различных параметров, в том числе от объема используемой базы 

данных и варьируется в довольно большом диапазоне. 

Следует отметить, что исследование предложенных авторами моделей осуществлялось 

не только на различных наборах данных, но и в некоторых случаях с использованием данных, 

полученных различными методами ультразвукового исследования. Это связано в том числе с 

проблемой имеющихся реальных наборов данных ультразвукового исследования груди в 

открытом доступе. Таким образом, часто группы исследователей осуществляли сбор данных 

для тренировки и тестирования предложенных решений самостоятельно в доступных им 

лечебных заведениях. 

В качестве направлений собственных исследований представляются перспективными два: 

1) Детекция, сегментация и идентификация изображений рака молочной железы на 

изображениях при помощи нейронных сетей семейства YOLO, что позволит с одной стороны 

уменьшить вычислительную сложность предлагаемых решений, а с другой стороны более 

точно находить зоны поражения тканей и уже, возможно, после этого использовать сети-

классификаторы, например, ResNet. 
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2) Использование различных парных функций потерь (loss function). Предполагается, что 

это позволит существенно повысить уровень распознавания целевых новообразований, 

поскольку данные функции потерь хорошо зарекомендовали себя при решении задач поиска 

похожих изображений.  

В качестве функций потерь предполагается использование следующих: 

Contrastive Loss.  

Является парной функцией потерь, при использовании которой объекты сравниваются 

по расстоянию друг с другом. Математический вид функции представлен в (1): 

𝐿 = 𝑦‖𝑓(𝐼𝑝) − 𝑓(𝐼𝑞)‖2
2
+ (1 − 𝑦)𝑚𝑎𝑥 {0,𝑚 − ‖𝑓(𝐼𝑝) − 𝑓(𝐼𝑞)‖2

}
2

,   (1) 

где y=1, если изображения Ip, Iq являются позитивной парой (эмбеддинги похожи), y=0, если 

Ip, Iq являются негативной парой (эмбеддинги непохожи), m – граница, в пределах которой 

разные объекты должны считаться таковыми. 

При использовании данной функции потерь нейронная сеть штрафуется, если похожие 

изображения имеют отдаленные эмбеддинги и если непохожие изображения имеют близкие 

эмбеддинги. 

Triplet Loss. 

Также является парной функцией потерь, но в работе используется три объекта: якорь, 

изображение, похожее на якорь (позитив), отличное изображение (негатив). Математический 

вид функции представлен выражением (2): 

𝐿 = 𝑚𝑎𝑥 {0, ‖𝑓(𝐼𝑎) − 𝑓(𝐼𝑞)‖2
2
− ‖𝑓(𝐼𝑎) − 𝑓(𝐼𝑛)‖2

2 +𝑚},                    (2) 

где Ia – изображение якорь, m – параметр, позволяющий избежать сходимости к тривиальным 

решениям. 

В данном случае решается задача минимизации расстояния между эмбеддингами якоря 

и позитива и максимизация между эмбеддингами якоря и негатива. 

N-tupled Loss. 

Эта функция потерь является развитием Triplet Loss и предполагает использование 

нескольких негативных примеров вместо одного, то есть сравнение якоря осуществляется с 

одним позитивом и несколькими негативами. Математический вид функции представлен 

формулой (3): 

𝐿 = 𝑙𝑜𝑔 [1 + ∑ 𝑒𝑥𝑝 (‖𝑓(𝐼𝑎) − 𝑓(𝐼𝑞)‖2
2
− ‖𝑓(𝐼𝑎) − 𝑓(𝐼𝑛

𝑖 )‖
2

2
)𝑁

𝑖=1 ],           (3) 

где 𝐼𝑛
𝑖  – i-ое негативное изображение, N+2 – размер выборки негативных примеров, который 

выбирается эмпирически. 

Однако использование рассмотренных функций потерь потребует существенного 

исследования, т. к. вопрос – что брать в данном случае в качестве якоря и негативных примеров, 

где в качестве позитивного примера используется целевое изображение нужных клеток, –

требует значительного изучения. Также следует отметить, что изображения ультразвукового 

исследования обладают своей спецификой, которую нужно учитывать. 

Разумеется, что оба указанных направления могут быть скомбинированы как полностью, 

так и частично.   
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