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Abstract This research focuses on the SIR mathematical model, analyzing disease dynamics in populations.
The SIR model classifies individuals into Susceptible, Infectives, and Removed categories, guided by
differential equations and key assumptions. Addressing questions on disease spread, maximum infectives,
total impact, epidemic cessation, and vaccination effects, the study emphasizes the contact ratio's role.
A high contact ratio leads to widespread disease, influencing infective numbers and population impact.
Epidemic cessation depends on reducing the contact ratio, enhancing recovery rates, and vaccination. The
study underscores vaccination coverage's importance, considering effectiveness and population
immunization for effective pandemic control, particularly relevant in the context of COVID-19.
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AHHoOTanmsA: B nanHOM HcClieZIoOBaHUU paccMaTpUBaeTca MaTemMaTtndeckas Moaens SIR, ananuzupyromas
OUHAMHUKY pacnpocTpaHeHus Oone3Hedl B HaceneHuu. Mogens SIR  kimaccudunupyer momedd Ha
MOJBEPKECHHBIX MH(EKINH, NHOUIUPOBAHHBIX M H3JICUEHHBIX, PYKOBOJACTBYACH TU(QepeHINnalIbHBIMU
YPaBHCHUSIMH W OCHOBHBIMH TpeArNoNioxKeHUsiMU. Hccienys BOIPOCH paclpocTpaHeHusl OOoJe3HH,
MaKCHUMaJbHOTO YKcia WH(GHUIUPOBAHHBIX, 0OLIETr0 BO3ACHCTBHS, NPEKpalleHus snuaeMun u 3¢ dekros
BaKLMHALIMM, HCCIICAOBAaHUE MOAYEPKUBACT pojb KoddduuueHta KoHTakTa. Bricokuil koadduuneHt
KOHTaKTa MPHUBOANT K IIHPOKOMY PAcCHpOCTpaHEHHIO OOJIE3HM, BIHSS HA YHCIO WHOUIIMPOBAHHBIX U
BO3/elicTBUe Ha HaceleHue. [IpekpaleHne AMUAEMUN 3aBUCUT OT CHM)KEHUS KO3 PHUIMEHTa KOHTaKTa,
YBEJIMYEHHSI CKOPOCTH BBI3IOPOBIICHUS M BaKUUHAUMU. lccienoBanue NoguyepkuBacT BaKHOCTb OXBaTa
BaKIMHAIMEH, yIuThBas 3()(PEKTHBHOCT, W MMMYHH3AIMIO HaceleHUs Uid 3(PQPEeKTUBHOIO KOHTPOJISL
MaHJeMHid, 0COOCHHO akTyanbHO B KoHTekcTe COVID-19.

KiroueBbie ciioBa: Monens SIR, auHamMuKka snuaeMuid, MaTeMaTHYECKOE MOJETUPOBaHNE HH(PEKINOHHBIX
OoJie3Hel, cTpaTerny BaKIMHALMH, KO3((GUIMEHT KOHTAKTa U PacIpocTpaHeHHEe O0Ie3HH

Jasi umrupoBanusi: Koucrantuaos U.C., Taxa T.A., Crapuenko J.H. 2024. Tunamuka momenu SIR:
B3MJISA/] HA STMIEMHUU M BakIMHAIMIO. DKoHOMuKa. Mupopmaruka, 51(1): 145-156. DOI 10.52575/2712-
746X-2024-51-1-145-156
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Introduction

The power of mathematical models is that they not only tell you things that may seem
obvious, but they also tell you how to alter things and control things to get them back under control.
The mathematical modeling of infectious diseases, exemplified by the SIR model, offers crucial
insights into epidemic dynamics and vaccination strategies. This research navigates through the
intricacies of the SIR model, delineating the dynamics of Susceptible, Infective, and Removed
populations. As the COVID-19 context underscores, vaccination coverage becomes paramount,
demanding an exploration of effectiveness and population immunization to effectively curb
pandemics.

Literature Review

The SIR model, which divides the population into susceptible, infected, and recovered
compartments, was introduced by Kermack and McKendrick in the 1920s. This model has been
refined and expanded upon by various researchers over the years. Flynn-Primrose et al. provide
explicit mathematical definitions for model products used in constructing stratified compartmental
models [Faris 2021]. The SIR model is a standard model for understanding epidemics, but it
assumes that infected patients are identical to symptomatic and infectious patients. However, for
COVID-19, it is now known that pre-symptomatic and asymptomatic patients can also be
infectious. To address this, a modified version of the SIR model has been proposed, where the
population is separated into five compartments: susceptible individuals, pre-symptomatic patients,
asymptomatic patients, quarantined patients, and recovered and/or dead patients [Sikder, Hossain,
and Islam 2023]. Mathematical models have been widely used to study the spread of infectious
diseases. These models provide insights into the dynamics of disease transmission and can help in
predicting, assessing, and controlling potential outbreaks [Al-Jebouri 2023]. Contact ratio, which
refers to the number of contacts an individual has, plays a significant role in disease transmission.
Studies have analyzed the impact of contact ratios on the spread of various infectious diseases. For
example, [Sharma et al. n.d., 2021] found that the structure of contact networks, influenced by
population-level risk-tolerance regimes and interaction type, affects the spread of the epidemic.
Vaccination strategies play a crucial role in controlling and preventing epidemics. Various
approaches have been explored in the literature to maximize the effectiveness of vaccination
campaigns and their impact on disease dynamics. These strategies include considering network
structure centrality measures, disease-spreading parameters, and a combination of both [Chatterjee
and Zehmakan 2023].

The basic reproductive number (RO) is a crucial concept in determining epidemic outcomes
and influencing disease control measures. It represents the average number of secondary infections
caused by a single infected individual in a susceptible population. Studies have explored the
importance of RO in various diseases, including Legionnaires' disease [Ahmad et al. 2023]. The
SIR model can be used to understand the dynamics of the COVID-19 pandemic by providing
insights into the spread of the virus through populations. The model considers the specific
distribution of initially infected individuals and the stochasticity of the transmission process,
allowing for more realistic predictions and scenarios [Yao, Jia, and Dai 2023]. Model validation
using real-world epidemiological data is crucial for assessing the accuracy and reliability of
mathematical models like the SIR model. However, there are challenges and methodologies
involved in this process. One challenge is the limited availability of data in the early stages of an
epidemic, which can hinder the performance of the model [Nath et al. 2023]. Optimal resource
allocation strategies during an epidemic have been discussed in several studies. These studies
utilize mathematical models to aid decision-making in resource allocation. [Gupta and Amin 2023]
propose a data-driven approach to incorporate parameter uncertainty into resource allocation
decisions, improving the efficacy of time-critical allocation decisions by 4-8 %. Vaccination
programs have been highly effective in preventing and eradicating infectious diseases, such as
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smallpox, polio, measles, and tetanus. These programs have been cost-effective and have had a
quick impact on population health by saving lives [Wang, Fekadu, and You 2023]. Numerous
lectures, hosted by the Oxford University Department for Continuing Education, have explored
the dynamics of the SIR model, which researchers have utilized in this paper [T. Crawford, 2021].

Model Development

In this model, the total population is divided into three categories or components: S for
susceptible, who are individuals who could potentially catch the disease; | for infectives,
representing those currently having the disease and capable of infecting others; and lastly, R for
removed, encompassing individuals who have already contracted the disease and have now either
recovered or died. With all mathematical models, various assumptions are incorporated to simplify
real-world phenomena because explaining everything in a set of simple differential equations can
be overly complex. The first assumption we make is that the epidemic is sufficiently short,
implying that it doesn't last for an extended period, allowing us to assume that the total population
remains constant. The second assumption in our model pertains to how the disease is transmitted.
We assume that the rate of increase in infectives is proportional to the contact between susceptible
and infectives, occurring at a constant rate. Our third assumption pertains to the removal rate,
where we also assume a constant rate, encompassing factors such as death or recovery rates, and
we maintain that this rate remains constant.

After making our assumptions, we need to formulate the equations governing our model.
Concerning the susceptible, the rate of change in the number of susceptible, based on our
assumption, indicates an expected decrease as individuals transition to infectives. Consequently,

the rate of change in the number of susceptible

s _
d_t = -rSI (1)

The minus sign indicates that the original initial number is decreasing as time progresses,
where 'r' is the rate of contact. The rate of susceptibles 'S' is proportional to the number of contacts
between infectives and susceptibles. Therefore, 'S multiplied by 'I' symbolizes the contact between
the number of infectives and susceptibles.

For the infectives, we have a similar equation. We aim to understand the rate of change of 'I'

over time, and this equation would grow as people move from susceptibles into infectives
dl

i rSI —al (2
The first term rSI in equation 2 is the same as in equation 1 but with the opposite sign
because susceptibles are moving to become infected. Additionally, based on our assumption that
infectives recover or die at a constant rate, if somebody is infective, he would move to the third
category, R, or the removal category. The third equation, representing the rate of change of the

removed population, must be equal to the gain from equation 2.
Z—f =al (3)

Equations 1, 2, and 3 represent the dynamics of three categories of people within the
population. In Equation 1, the number of susceptibles would decrease according to the number of
contacts between infectives and susceptibles. In Equation 2, the number of susceptibles would
increase due to contact between people and decrease when individuals are dying as a result of the
disease or recovering. Finally, in Equation 3, the removed category includes people who no longer
catch the disease, either because they have recovered or have died.

Before solving this system of differential equations, we require initial data. Therefore, we
need to define the initial number of susceptible people in the population. We can state that the
initial number of infectives is denoted as S,, the initial value of infectives is denoted as I, and the
initial value of the removed category (R,) is set to zero, as no one has yet recovered or died as a
result of the disease.

§S=S,,I=1,,R=R, =0 initially
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We assumed that the population must be constant due to the epidemic. What this means is
that the rate of change of susceptibles plus the rate of change of infectives plus the rate of change
of removed must always be zero because the total population is givenby S+1+R =1, + R,,.

S(S+I+R) =0 4)
We can solve 1,2 and 3 equations because we know the initial condition of the population,
so the total population doesn’t change over time. So, we can take the initial value, which is the

starting point representing the population value, as time cannot change it; it always has a constant
value.

Results and Discussion

According to our built system, we should answer these questions

Q1 Will the disease spread?

We have an initial number of infected people given by I, at the beginning of the epidemic,
and what we want to know is whether that would grow. If the infected start to grow, then the
disease would spread through the population, so what we are interested in is the rate of change of
the number of infectives in equation 2. But before we do that, we want to start with equation 1, as
it would always be a negative number since all of its parameters are positive numbers and it
contains a minus sign. So, the change of S would always be negative; this tells us that S at any
given time must be smaller than or equal to the initial value S,,.

§$<S, (5)
Now we can take this value S, and plug it into equation 2
% <I(rS, — a) (6)

So, the epidemic would occur if the size of | increases from its initial value lo, so the answer
to our first question would be related to the sign of this term (S, — a) equation 6. If this term is
positive, so there will be a spread of the disease. This means if S, > a/r the disease indeed will
spread.

The value of r/a is called g which is called the contact ratio, which is a fraction of the
population that comes into contact with an infected individual during the period when they are
infectious. We can also re-arrange S, > a/r to be S,q > 1or R, > 1. Condition R, > 1
determines whether or not the epidemic will occur. Where R, is the reproductive number which
represents the number of secondary infections in the population caused by initial primary infection.
R, value will tell how many infections in the average one infected person will give the disease to
within susceptibles. The value of R, in COVID-19 is estimated to be 3 to 4, which is why it is
spread so rapidly all around the world.

Real data was collected and organized by the World Health Organization (WHO). Some data
points were missing, and therefore, we employed interpolation techniques to fill in these gaps.
Figure 1 displays the basic reproduction number calculated by the WHO, with the interpolated
graph overlaid. The dataset spans from May 2020 to January 2023.

As mentioned earlier, when the condition R, > 1 satisfies ? the answer determines whether
the number of infected people will increase or decrease. Therefore, it is essential to identify when
the value of R, is below or above 1. Figure 2 illustrates the distinct values of R,,, indicating whether
it is above or below 1.

In Figure 3, When plotting the daily count of infected individuals alongside the
corresponding values of the basic reproduction number R,, we observed a clear pattern: as R,
exceeds 1, the number of cases, scaled up to a maximum of 2.5, increases, while it decreases as
R, falls below 1. The intersection of the Ro curve with the vertical line at 1 manifest as a turning
point in the graph representing new cases.
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Fig.1. Real data of R, for Russia over time (Our Data explorer website)
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Fig.3. Relation between R, and new cases
Puc.3. CBa3p Mexnay R, 1 HOBBIMHU CITyqasiMU

Q2 What would be the maximum number of infectives?
The number of maximum infections is very helpful when we trying to distribute health resources.
So, we want to create an equation for I that’s in terms of various parameters we know within our

system of equations. we would divide equation 2 by equation 1 to end up with equation %

EZTIS_aI:—l‘l‘i:—l‘i‘i (7)
das -rIS rS qs

We can solve this equation directly by integrating both sides of the differential equation and
as we would have initial conditions,

I+S+$ln5 =15, +$ln5’o (8)

Equation 8 for I in terms of S and other parameters of our model, we haven’t yet found I,,,,,
which is the maximum number of infectives at any given time, which is what we want to answer our
second question. To obtain the maximum I in equation 8 we need to differentiate it and equal it to zero.

As we saw the derivative of equation 8 is equation 7. So, we conclude that the maximum value of I in
equation 8 occurs when substituting S = 1/q in equation 8 and re-arranging for I. We get

Imax = 1o+S, — $ (1 + ln(qSo)) (9)

Equation 9 says that the maximum number of infectives equal to the total population I, + S,
minus a function of g .We denoted looks(1 + In(gS,) as f(q) , we are interested how it is looks like.
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\1(9)

Fig.4. Plot of function % (1 +1n(qS,))
Puc.4. I'paduk dyHKIIMH % (1 +1n(qS,))

The key parameter is the value of g which is the contact ratio which is the fraction of the
population that comes into contact with an infected individual. In the recent COVID-19, the value
of g is high because the disease is very easy to transmit, with lots of people getting it, and lots of
people getting into contact with those that have it, especially during long incubation periods where
the symptoms do not show. Ultimately for our model, q is very big for the COVID-19 outbreak.
Looking at Figure 4 , if q is big, so f(q) would be small, and then I max would be big. What this
means for the maximum number of infectives is that the maximum number of people that can have
the disease at any given time is equal to the total population minus the function in Figure 1 (f(q)
where in this case quite small (when q is big) which is very bad news in the outbreak when have
large q value.
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Fig.5. Maximum infected cases as a function of g
Puc.5. MakcuMmaabHOE KOTUYECTBO I/IH(i)I/II_II/IPOBaHHLIX CJIy4acB B 3aBUCUMOCTH OT q
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With considering that I,,,,,, = I,+S, — i (1 + In(qS,)) from equation 9, and I,+S, is 1 for

the whole population , and g5, is R, , we can calculate R, by taking average of all the recorded
values in the dataset, in Figure 5 we drew the value of Imax as a function of g, then by using our
recoded data in (Our Data explorer website) , we calculated the mean value of g for the whole
period of study .

The red point in indicate the real g from the dataset after taking the average of all R, within
the dataset (Our Data explorer website). the substitute R, and the Imax taken from given dataset
to find the average real g for the last pandemic.

Q3 How many people will catch the disease?

In our assumption, we assumed that the total population was constant. We first need to think
about what it means for diseases to “end”, because if we want to know the total number of people
that caught the diseases, we need the actual spread of the disease to end, this means that the number
of infectives must go down to zero. So, we can call it the end of the outbreak. We have to look at
our assumption that the total population doesn’t change

R+I1+S=1,+S5, (10)

We have to find the size of R in equation 10 when the number of I goes to zero, so we have
to re-write equation 10 at the end of the epidemic

Rena = 1o + S5 — Sena (11)

In equation 11 we noticed that the sum of people infected and recovered or died is the total
population I, + S, minus the susceptibles left after the end of the pandemic. The only unknown
value in equation 11 is S,,,4; . We can find S,,,4 by substituting / = 0 in equation 8.

Send + 7 NSena = 1o + S, + 7 InS, (12)

S(end)(q)

Fig.6. The plot of the equation 12
Puc.6. I'paduk pyrakmmm 12

We have to solve equation 12 to find the number of susceptibles left after the end of the
disease, then we have to substitute the value of S,,,; from equation 12 into equation 11 to find the
value of R,,4; Which is the answer to question 3. so, we would plot S,,,; versus g.

152



Beal'V

#‘ OkoHoMuKa. MIHdbopmaTmka. 2024. T. 51, Ne 1 (145-156)
“ Economics. Information technologies. 2024. V. 51, No. 1 (145-156)

As we noticed from Figure 6 the large value of q the S, 4 is small and therefore according
to equation 11, the value of R,,,4 is large which is of course bad news. In summary, quite a lot if
not the vast majority of the population will catch the disease if the value of q is sufficiently large.

Q4 What is the condition for an epidemic to stop, and how it would be affected by a vaccine?

In Equation 2 (% = I(rS — a) ) we saw that the term (rS — a) has to be negative for the

pandemic to stop. So, the number of people with the disease must be decreasing, so they would
get down to zero and stop.
If the term (S — a) would be negative then

R:="<1 fordisease to stop (13)
a

From inequality 13 we see that there are three parameters to make this inequality right, which
are reducing r, S or increasing a which means how long people are sick, the longer the one is sick,
the larger opportunity to infect other people. We will control that with better medication to get
people healthier sooner. Where r is the rate that infected people pass the disease on to susceptibles
people, we can keep this parameter down by lockdown and social distancing or keep them
quarantined. As vaccines became available, we need to pay attention to how the availability of
vaccines effect the conclusion we draw from our model.

With vaccine we try to get the S which is the number of susceptibles people down, Vaccines
can effectively reduce S such that R stays below one even if we go back to normal life.

Q5 How many people do we need to vaccinate to stop the pandemic?

At the start of pandemic, Ro equal Ro=rSoa because it is a new disease, nobody had it before
and nobody has immunity, so So=1 which means everybody is susceptible everybody could get
the disease, so Ro=ra.

After vaccination, the people stay susceptibles, and if we denote the proportion of
susceptibles people vaccinated by v then

S*+v=1-> v=1-5" (15)
For pandemic to stop, this inequality has to be true

Tels sP<is st L (16)
a r Ro

According to equation 15, If% = Ri of the people or less still susptables because they are not

vaccinated, then the disease will stop, which means if R, = 3, then 2/3 of people need to be
vaccinated before the disease stops.
According to the equation 15, for the pandemic to stop, portion of people vaccinated should be

1

v>1-— E (17)
In Figure 7, the percentage of fully vaccinated individuals in Russia over time is depicted on
the horizontal axis. After calculating the mean of the reproduction factor from the onset of the
disease until the first person was fully vaccinated, the resulting value was 1.14. Therefore, the
value of v needed to satisfy the inequality 17 is 0.122 of the population, indicating that at least
12.2 % of the Russian population needs to be vaccinated for the disease to stop. Allowing people
to return to normal life implies that R,would increase since the contact rate will rise. So, we
assumed various values of Ro and determined the corresponding minimum v needed to halt the

disease. The minimum threshold of v is depicted with different colors.
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Fully Vaccinated Percentage and Thresholds Over Time
L0

v for Ro_mean = 1.14
v for Ro_mean = 1.5
v for Ro_mean = 2

v for Ro_mean = 3

v for Ro_mean = 4

0.8 4

0.6 1

0.4 1

Fully Vaccinated (%)

rd

0.2 1

0.0

|

a R T SN N o % A, o

o M s M e M us D Ma M% g

,\;6’ \’Qb‘ ,\;d" ,\;6\ ,\,0“’ ,\’9’ ,\;C" ,VG’ ’1;6) ,Ls)q ,bp"‘
a e A A ) ) a 5
I I S AN a° a° 2 w»

For Ro_mean =1.14,v>0.122
For Ro_mean = 1.5, v >0.333
For Ro_ mean=2,v>0.5
For Ro_mean = 3, v > 0.666
For Ro_mean=4,v>0.75
Fig.7. Fully vaccinated percentage overtime in Russia
Puc.7. IIpoueHT MoaHOCTHIO0 BAKIMHUPOBAHHBIX MALIMEHTOB B Poccuu B paznuyHble NEPUOJIbI BpEMEHU

Q6 What happen if the vaccine isn’t 100 % effective?

If the vaccine is not 100 % effective, this changes the inequality in 17, where not all
vaccinated persons have an immunity against the disease, lets denote the effectiveness of the
vaccine by e and the part of vaccinated population that has a full immunity against the disease by
veff ,were

Veff = €.V (18)

So, if we have 100 people vaccinated and a 95 % effective vaccine, so 95 of those people
would be immune against the disease. considering equation 18 and plugging it in inequality 17,
we conclude that for the disease to stop the number of vaccinated should be

1 1
v > ;(1 - R_o) (19)
In Figure 8, we present the same graph as in Figure 7, depicting the scenario for the fully
vaccinated population. However, we now incorporate the effect of vaccination according to

Equation 19. As the efficacy of the vaccine diminishes, there is a corresponding increase in the
percentage of the population that needs to be vaccinated.
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Conclusion

For COVID-19, contact ratio g is the main key to determining the behavior of the disease.
We can see that if g is large, the disease will spread and epidemic will occur. In the answer of
question two we had known that the maximum number of infectives is equal to everybody minus
some function of g (Figure 1), which is high for small values of g, which means as g goes high
this function in Figure 1 would be low and therefore the I,,,,, would be low. In question 3 the total
people who catch the disease is which tell us that basically again that most majority of population
will catch the disease if the value of q is large.

Equation 16 indicated, the value of susptables people (non-vaccinee) should be lower than
1/Ro for the pandemic to stop. in equation 17 we saw that the proportion of people need to be
vaccinated should be at least 1-1/R. for the pandemic to stop. If the vaccine is not 100 % effective,
as mentioned in inequality 19, at least 1/e(1-1/Ro) need to be vaccinated for the pandemic to stop.
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